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Digital signatures have become a key technology for making the Internet and
other IT-infrastructures secure. Digital signatures provide authenticity, in-
tegrity, and non-repudiation of data. Digital signatures are widely used in
identification and authentication protocols. Therefore, the existence of secure
digital signature algorithms is crucial for maintaining IT-security.

The digital signature algorithms that are used in practice today are RSA
[31], DSA [11], and ECDSA [15]. They are not quantum immune since their
security relies on the difficulty of factoring large composite integers and com-
puting discrete logarithms.

Hash-based digital signature schemes which are presented in this chapter
offer a very interesting alternative. Like any other digital signature scheme,
hash-based digital signature schemes use a cryptographic hash function. Their
security relies on the collision resistance of that hash function. In fact, we will
present hash-based digital signature schemes that are secure if and only if the
underlying hash function is collision resistant. The existence of collision resis-
tant hash functions can be viewed as a minimum requirement for the existence
of a digital signature scheme that can sign many documents with one private
key. That signature scheme maps documents (arbitrarily long bit strings) to
digital signatures (bit strings of fixed length). This shows that digital signature
algorithms are in fact hash functions. Those hash functions must be collision
resistant: if it were possible to construct two documents with the same digital
signature, the signature scheme could no longer be considered secure. This
argument shows that there exist hash-based digital signature schemes as long
as there exists any digital signature scheme that can sign multiple documents
using one private key. As a consequence, hash-based signature schemes are
the most important post-quantum signature candidates. Although there is no
proof of their quantum computer resistance, their security requirements are
minimal. Also, each new cryptographic hash function yields a new hash-based
signature scheme. So the construction of secure signature schemes is indepen-
dent of hard algorithmic problems in number theory or algebra. Constructions
from symmetric cryptography suffice. This leads to another big advantage of
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hash-based signature schemes. The underlying hash function can by chosen
in view of the hardware and software resources available. For example, if the
signature scheme is to be implemented on a chip that already implements
AES, an AES based hash function can be used, thereby reducing the code
size of the signature scheme and optimizing its running time.

Hash-based signature schemes were invented by Ralph Merkle [23]. Merkle
started from one-time signature schemes, in particular that of Lamport and
Diffie [18]. One-time signatures are even more fundamental. The construc-
tion of a secure one-time signature scheme only requires a one-way function.
As shown by Rompel [28], one-way functions are necessary and sufficient for
secure digital signatures. So one-time signature schemes are really the most
fundamental type of digital signature schemes. However, they have a severe
disadvantage. One key-pair consisting of a secret signature key and a public
verification key can only be used to sign and verify a single document. This
is inadequate for most applications. It was the idea of Merkle to use a hash
tree that reduces the validity of many one-time verification keys (the leaves
of the hash tree) to the validity of one public key (the root of the hash tree).
The initial construction of Merkle was not sufficiently efficient, in particu-
lar in comparison to the RSA signature scheme. However in the meantime,
many improvements have been found. Now hash-based signatures are the most
promising alternative to RSA and elliptic curve signature schemes.

1 Hash based one-time signature schemes

This chapter explains signature schemes whose security is only based on the
collision resistance of a cryptographic hash function. Those schemes are par-
ticularly good candidates for the post quantum era.

1.1 Lamport–Diffie one-time signature scheme

The Lamport–Diffie one-time signature scheme (LD-OTS) was proposed in
[18]. Let n be a positive integer, the security parameter of LD-OTS. LD-OTS
uses a one-way function

f : {0, 1}n → {0, 1}n,

and a cryptographic hash function

g : {0, 1}∗ → {0, 1}n.

LD-OTS key pair generation. The signature key X of LD-OTS consists of 2n
bit strings of length n chosen uniformly at random,

X =
(
xn−1[0], xn−1[1], . . . , x1[0], x1[1], x0[0], x0[1]

)
∈R {0, 1}(n,2n). (1)
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The LD-OTS verification key Y is

Y =
(
yn−1[0], yn−1[1], . . . , y1[0], y1[1], y0[0], y0[1]

)
∈ {0, 1}(n,2n), (2)

where
yi[j] = f

(
xi[j]

)
, 0 ≤ i ≤ n− 1, j = 0, 1. (3)

So LD-OTS key generation requires 2n evaluations of f . The signature and
verification keys are 2n bit strings of length n.

LD-OTS signature generation. A document M ∈ {0, 1}∗ is signed using
LD-OTS with a signature key X as in Equation (1). Let g(M) = d =
(dn−1, . . . , d0) be the message digest of M . Then the LD-OTS signature is

σ =
(
xn−1[dn−1], . . . , x1[d1], x0[d0]

)
∈ {0, 1}(n,n). (4)

This signature is a sequence of n bit strings, each of length n. They are chosen
as a function of the message digest d. The ith bit string in this signature is
xi[0] if the ith bit in d is 0 and xi[1], otherwise. Signing requires no evaluations
of f . The length of the signature is n2.

LD-OTS Verification. To verify a signature σ = (σn−1, . . . , σ0) of M as in
(4), the verifier calculates the message digest d = (dn−1, . . . , d0). Then she
checks whether

(
f(σn−1), . . . , f(σ0)

)
=
(
yn−1[dn−1], . . . , y0[d0]

)
. (5)

Signature verification requires n evaluations of f .

Example 1. Let n = 3, f : {0, 1}3 → {0, 1}3, x �→ x + 1 mod 8, and let d =
(1, 0, 1) be the hash value of a message M . We choose the signature key

X =
(
x2[0], x2[1], x1[0], x1[1], x0[0], x0[1]

)
=

⎛
⎝

1 0 0 1 1 0
1 0 1 1 0 1
1 0 1 0 1 0

⎞
⎠ ∈ {0, 1}(3,6)

and compute the corresponding verification key

Y =
(
y2[0], y2[1], y1[0], y1[1], y0[0], y0[1]

)
=

⎛
⎝

0 0 1 1 1 0
0 0 0 1 1 1
0 1 0 1 0 1

⎞
⎠ ∈ {0, 1}(3,6).

The signature of d = (1, 0, 1) is

σ = (σ2, σ1, σ0) = (x2[1], x1[0], x0[1]) =

⎛
⎝

0 0 0
0 1 1
0 1 0

⎞
⎠ ∈ {0, 1}(3,3)
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Example 2. We give an example to illustrate why the signature keys of LD-
OTS must be used only once. Let n = 4. Suppose the signer signs two mes-
sages with digests d1 = (1, 0, 1, 1) and d2 = (1, 1, 1, 0) using the same signa-
ture key. The signatures of these digests are σ1 = (x3[1], x2[0], x1[1], x0[1])
and σ2 = (x3[1], x2[1], x1[1], x0[0]), respectively. Then an attacker knows
x3[1], x2[0], x2[1], x1[1], x0[0], x0[1] from the signature key. She can use this
information to generate valid signatures for messages with digests d3 =
(1, 0, 1, 0) and d4 = (1, 1, 1, 1). This example can be generalized to arbitrary
security parameters n. Also, the attacker is only able to generate valid sig-
natures for certain digests. As long as the hash function used to compute
the message digest is cryptographically secure, she cannot find appropriate
messages.

1.2 Winternitz one-time signature scheme

While the key and signature generation of LD-OTS is very efficient, the size of
the signature is quite large. The Winternitz OTS (W-OTS), which is explained
in this section, produces significantly shorter signatures. The idea is to use one
string in the one-time signature key to simultaneously sign several bits in the
message digest. In literature this proposal appears first in Merkle’s thesis [23].
Merkle writes that the method was suggested to him by Winternitz in 1979
as a generalization of the Merkle OTS also described in [23]. However, to the
best of the authors knowledge, the Winternitz OTS was for the first time
described in full detail in [10]. Like LD-OTS, W-OTS uses a one-way function

f : {0, 1}n → {0, 1}n

and a cryptographic hash function

g : {0, 1}∗ → {0, 1}n.

W-OTS key pair generation. A Winternitz parameter w ≥ 2 is selected which
is the number of bits to be signed simultaneously. Then

t1 =
⌈ n

w

⌉
, t2 =

⌈
�log2 t1	+ 1 + w

w

⌉
, t = t1 + t2. (6)

are determined. The signature key X is

X =
(
xt−1, . . . , x1, x0

)
∈R {0, 1}(n,t). (7)

where the bit strings xi are chosen uniformly at random.
The verification key Y is computed by applying f to each bit string in the

signature key 2w − 1 times. So we have

Y =
(
yt−1, . . . , y1, y0

)
∈ {0, 1}(n,t), (8)

where
yi = f2w−1

(
xi

)
, 0 ≤ i ≤ t− 1. (9)

Key generation requires t(2w − 1) evaluations of f and the lengths of the
signature and verification key are t · n bits, respectively.
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W-OTS signature generation. A message M with message digest g(M) = d =
(dn−1, . . . , d0) is signed. First, a minimum number of zeros is prepended to d
such that the length of d is divisible by w. The extended string d is split into
t1 bit strings bt−1, . . . , bt−t1 of length w. Then

d = bt−1‖ . . . ‖bt−t1 , (10)

where ‖ denotes concatenation. Next, the bit strings bi are identified with
integers in {0, 1, . . . , 2w − 1} and the checksum

c =
t−1∑

i=t−t1

(2w − bi) (11)

is calculated. Since c ≤ t12w, the length of the binary representation of c is
less than

�log2 t12w	+ 1 = �log2 t1	+ w + 1. (12)

A minimum number of zeros is prepended to this binary representation such
that the length of the extended string is divisible by w. That extended string
is split into t2 blocks bt2−1, . . . , b0 of length w. Then

c = bt2−1|| . . . ||b0.

Finally the signature of M is computed as

σ =
(
f bt−1(xt−1), . . . , f b1(x1), f b0(x0)

)
. (13)

In the worst case, signature generation requires t(2w − 1) evaluations of f .
The W-OTS signature size is t · n.

W-OTS verification. For the verification of the signature σ = (σt−1, . . . , σ0)
the bit strings bt−1, . . . , b0 are calculated as explained in the previous section.
Then we check if

(
f2w−1−bt−1(σn−1), . . . , f2w−1−b0(σ0)

)
=
(
yn−1, . . . , y0

)
. (14)

If the signature is valid, then σi = f bi(xi) and therefore

f2w−1−bi(σi) = f2w−1(xi) = yi (15)

holds for i = t − 1, . . . , 0. In the worst case, signature verification requires
t(2w − 1) evaluations of f .

Example 3. Let n = 3, w = 2, f : {0, 1}3 → {0, 1}3, x �→ x + 1 mod 8 and
d = (1, 0, 0). We get t1 = 2, t2 = 2, and t = 4. We choose the signature key as

X =
(
x3, x2, x1, x0

)
=

⎛
⎝

1 0 0 1
1 0 1 1
1 0 1 0

⎞
⎠ ∈ {0, 1}(3,4)
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and compute the verification key by applying f three times to the bit strings
in X:

Y =
(
y3, y2, y1, y0

)
=

⎛
⎝

0 0 1 0
1 1 1 0
0 1 0 1

⎞
⎠ ∈ {0, 1}(3,4).

Prepending one zero to d and splitting the extended string into blocks of length
2 yields d = 01||00. The checksum c is c = (4− 1) + (4− 0) = 7. Prepending
one zero to the binary representation of c and splitting the extended string
into blocks of length 2 yields c = 01||11. The signature is

σ = (σ3, σ2, σ1, σ0) =
(
f(x3), x2, f(x1), f3(x0)

)
=

⎛
⎝

0 0 1 1
0 0 0 1
0 0 0 1

⎞
⎠ ∈ {0, 1}(3,4).

The signature is verified by computing

(
f2(σ3), f3(σ2), f2(σ1), σ0

)
=

⎛
⎝

0 0 1 0
1 1 1 0
0 1 0 1

⎞
⎠ ∈ {0, 1}(3,4)

and comparing it with the verification key Y .

Example 4. We give an example to illustrate why the signature keys of the W-
OTS must be used only once. Let w = 2. Suppose the signer signs two messages
with digests d1 = (1, 0, 0) and d2 = (1, 1, 1) using the same signature key.
The signatures of these digests are σ1 =

(
f(x3), x2, f(x1), f3(x0)

)
and σ2 =(

f(x3), f3(x2), f(x1), x0

)
, respectively. The attacker can use this information

to compute the signatures for messages with digest d3 = (1, 1, 0) given as
σ3 =

(
f(x3), f2(x2), f(x1), f(x0)

)
Again this example can be generalized to

arbitrary security parameters n. Also, the attacker can only produce valid
signatures for certain digests. As long as the hash function used to compute
the message digest is cryptographically secure, he cannot find appropriate
messages.

2 Merkle’s tree authentication scheme

The one-time signature schemes introduced in the last section are inadequate
for most practical situations since each key pair can only be used for one
signature. In 1979 Ralph Merkle proposed a solution to this problem [23].
His idea is to use a complete binary hash tree to reduce the validity of an
arbitrary but fixed number of one time verification keys to the validity of one
single public key, the root of the hash tree.

The Merkle signature scheme (MSS) works with any cryptographic hash
function and any one-time signature scheme. For the explanation we let g :
{0, 1}∗ → {0, 1}n be a cryptographic hash function. We also assume that a
one-time signature scheme has been selected.
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MSS key pair generation

The signer selects H ∈ N, H ≥ 2. Then the key pair to be generated will be
able to sign/verify 2H documents. Note that this is an important difference
to signature schemes such as RSA and ECDSA, where potentially arbitrarily
many documents can be signed/verified with one key pair. However, in practice
this number is also limited by the devices on which the signature is generated
or by some policy. The signer generates 2H one-time key pairs (Xj , Yj), 0 ≤
j < 2H . Here Xj is the signature key and Yj is the verification key. They
are both bit strings. The leaves of the Merkle tree are the digests g(Yj),
0 ≤ j < 2H . The inner nodes of the Merkle tree are computed according
to the following construction rule: a parent node is the hash value of the
concatenation of its left and right children. The MSS public key is the root
of the Merkle tree. The MSS private key is the sequence of the 2H one-time
signature keys. To be more precise, denote the nodes in the Merkle tree by
νh[j], 0 ≤ j < 2H−h, where h ∈ {0, . . . , H} is the height of the node. Then

νh[j] = g(νh−1[2j]‖νh−1[2j + 1]), 1 ≤ h ≤ H, 0 ≤ j < 2H−h. (16)

Figure 1 shows an example for H = 3.

ν0[0] ν0[1] ν0[2] ν0[3] ν0[4] ν0[5] ν0[6] ν0[7]

ν1[0] ν1[1] ν1[2] ν1[3]

ν2 [0] ν2[1]

ν3[0]

X0 X1 X2 X3 X4 X5 X6 X7

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Fig. 1. A Merkle tree of height H = 3

MSS key pair generation requires the computation of 2H one-time key
pairs and 2H+1 − 1 evaluations of the hash function.

Efficient root computation

In order to compute the root of the Merkle tree it is not necessary to store the
full hash tree. Instead, the treehash algorithm 2.1 is applied. The basic idea
of this algorithm is to successively compute leaves and, whenever possible,
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compute their parents. To store nodes, the treehash algorithm uses a stack
Stack equipped with the usual push and pop operations. Input of the tree
hash algorithm is the height H of the Merkle tree. Output is the root of
the Merkle tree, i.e. the MSS public key. Algorithm 2.1 uses the subroutine
Leafcalc(j) to compute the jth leaf. The Leafcalc(j) routine computes
the jth one-time key pair and computes the jth leaf from the jth one-time
verification key as described above.

Algorithm 2.1 Treehash
Input: Height H ≥ 2
Output: Root of the Merkle tree

1. for j = 0, . . . , 2H − 1 do
a) Compute the jth leaf: Node1 ← Leafcalc(j)
b) While Node1 has the same height as the top node on Stack do

i. Pop the top node from the stack: Node2 ← Stack.pop()
ii. Compute their parent node: Node1 ← g(Node2‖Node1)

c) Push the parent node on the stack: Stack.push(Node1)
2. Let R be the single node stored on the stack: R ← Stack.pop()
3. Return R

Figure 2 shows the order in which the nodes of a Merkle tree are computed
by the treehash algorithm. In this example, the maximum number of nodes
that are stored on the stack is 3. This happens after node 11 is generated
and pushed on the stack. In general, the treehash algorithm needs to store at
most H so-called tail nodes on the stack. To compute the root of a Merkle
tree of height H, the treehash algorithm requires 2H calls of the Leafcalc

subroutine, and 2H − 1 evaluations of the hash function.

1 2 4 5 8 9 11 12

3 6 10 13

7 14

15

Fig. 2. The treehash algorithm

MSS signature generation

MSS uses the one-time signature keys successively for the signature genera-
tion. To sign a message M , the signer first computes the n-bit digest d = g(M).
Then he generates the one-time signature σOTS of the digest using the sth
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one-time signature key Xs, s ∈ {0, . . . , 2H − 1}. The Merkle signature will
contain this one-time signature and the corresponding one-time verification
key Ys. To prove the authenticity of Ys to the verifier, the signer also includes
the index s as well as an authentication path for the verification key Ys which
is a sequence As = (a0, . . . , aH−1) of nodes in the Merkle tree. This index and
the authentication path allow the verifier to construct a path from the leaf
g(Ys) to the root of the Merkle tree. Node h in the authentication path is the
sibling of the height h node on the path from leaf g(Ys) to the Merkle tree
root:

ah =
{

νh[s/2h − 1] , if �s/2h	 ≡ 1 mod 2
νh[s/2h + 1] , if �s/2h	 ≡ 0 mod 2 (17)

for h = 0, . . . H − 1. Figure 3 shows an example for s = 3. So the sth Merkle
signature is

σs =
(
s, σOTS, Ys, (a0, . . . , aH−1)

)
(18)

a0 g(Y3)

a1

a2

X3

Y3 d

OTS σOTS

Fig. 3. Merkle signature generation for s = 3. Dashed nodes denote the authenti-
cation path for leaf g(Y3). Arrows indicate the path from leaf g(Y3) to the root.

MSS signature verification

Verification of the Merkle signature from the previous section consists of two
steps. In the first step, the verifier uses the one-time verification key Ys to
verify the one-time signature σOTS of the digest d by means of the verification
algorithm of the respective one-time signature scheme. In the second step
the verifier validates the authenticity of the one-time verification key Ys by
constructing the path (p0, . . . , pH) from the sth leaf g(Ys) to the root of the
Merkle tree. He uses the index s and the authentication path (a0, . . . , aH−1)
and applies the following construction.
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ph =
{

g(ah−1||ph−1) , if �s/2h−1	 ≡ 1 mod 2
g(ph−1||ah−1) , if �s/2h−1	 ≡ 0 mod 2 (19)

for h = 1, . . . H and p0 = g(Ys). The index s is used for deciding in which
order the authentication path nodes and the nodes on the path from leaf
g(Ys) to the Merkle tree root are to be concatenated. The authentication of
the one-time verification key Ys is successful if and only if pH equals the public
key.

3 One-time key-pair generation using an PRNG

According to the description of MSS from Section 2, the MSS private key
consists of 2H one-time signature keys. Storing such a huge amount of data
is not feasible for most practical applications. As suggested in [3], space can
be saved by using a deterministic pseudo random number generator (PRNG)
and storing only the seed of that PRNG. Then each one-time signature key
must be generated twice, once for the MSS public key generation and once
during the signing phase.

In the following, let PRNG be a cryptographically secure pseudo random
number generator that on input an n-bit seed Seedin outputs a random num-
ber Rand and an updated seed Seedout, both of bit length n.

PRNG : {0, 1}n → {0, 1}n × {0, 1}n

Seedin �→ (Rand,Seedout)
(20)

MSS key pair generation using an PRNG

We explain how MSS key-pair generation using a PRNG works. The first step
is to choose an n-bit seed Seed0 uniformly at random. For the generation of
the one-time signature keys we use a sequence of seeds SeedOtsj , 0 ≤ j < 2H .
They are computed iteratively using

(SeedOtsj ,Seedj+1) = PRNG(Seedj), 0 ≤ j < 2H . (21)

Here SeedOtsj is used to calculate the jth one-time signature key.
For example, in the case of W-OTS (see Section 1.2) the jth signature key

is Xj = (xt−1, . . . , x0). The t bit strings of length n in this signature key are
generated using SeedOtsj .

(xi,SeedOtsj) = PRNG(SeedOtsj), i = t− 1, . . . , 0 (22)

The seed SeedOtsj is updated during each call to the PRNG. This shows
that in order to calculate the signature key Xj only knowledge of Seedj

is necessary. When SeedOtsj is computed, the new seed Seedj+1 for the



Hash-based Digital Signature Schemes 45

generation of the signature key Xj+1 is also determined. Figure 4 visualizes
the one-time signature key generation using an PRNG.

If this method is used, the MSS private key is initially Seed0. Its length
is n. It is replaced by the seeds Seedj+1 determined during the generation of
signature key Xj .

PRNG

PRNGPRNG

PRNGPRNGPRNG

PRNGPRNG

PRNG

x0

xt−1

x0

xt−1

x0

xt−1

SEEDOTS2H−1SEEDOTS1

SEEDOTS1

SEEDOTS1
SEEDOTS0

SEEDOTS0

SEEDOTS0

SEED2H−1SEED1

SEED0

SEEDOTS2H−1

SEEDOTS2H−1

Fig. 4. One-time signature key generation using an PRNG

MSS signature generation using an PRNG

In contrast to the original MSS signature generation, the one-time signature
key must be computed before the signature is generated. When the signature
key is computed the seed is updated for the next signature.

Forward security

In addition to reducing the private key size, using a PRNG for the one-time
signature key generation has another benefit. It makes MSS forward secure as
long as PRNG is forward secure which means that calculating previous seeds
from the actual seed is infeasible. Forward security of the signature scheme
means that all signatures issued before a revocation remain valid. MSS is
forward secure, since the actual MSS private key can only be used to generate
one-time signature keys for upcoming signatures but not to forge previous.
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4 Authentication path computation

In this chapter we will present a variety of techniques for traversal of Merkle
trees of height H. The use of the techniques is transparent to a verifier, who
will not need to know how a set of outputs were generated, but only that they
are correct. Therefore, the technique can be employed in any construction
for which the generation and output of authentication paths for consecutive
leaves is required.

The first traversal algorithm is structurally very simple and allows for
various tradeoffs between storage and computation. For one choice of param-
eters, the total space required is bounded by 1.5H2/ log H hash values, and
the worst-case computational effort is 2H/ log H tree node computations per
output.

The next Merkle tree-traversal algorithm has a better space and time
complexity than the previously known algorithms. Specifically, the algorithm
requires computation of at most 2H tree nodes per round and requires storage
of less than 3H node values. We also prove that this complexity is optimal in
the sense that there can be no Merkle Tree traversal algorithm which requires
both less than O(H) time and less than O(H) space.

In the analysis of the first two algorithms, the computation of a leaf and
an inner node are each counted as a single elementary operation1.

The third Merkle tree-traversal algorithm has the same space and time
complexity as the second. However it has a significant constant factor im-
provement and was designed for practical implementation. It distinguishes
between leaf computations and the computation of inner nodes. To traverse a
tree of height H it roughly requires the computation of H/2 leaves and 3H/2
inner nodes.

4.1 The Classic Traversal

The challenge of Merkle tree traversal is to ensure that all node values are
ready when needed, but are computed in a manner which conserves space
and time. To motivate the new algorithms, we first discuss what the average
per-round computation is expected to be, and review the classic Merkle tree
traversal.

Average Costs. Each node in the tree is eventually part of an authentication
path, so one useful measure is the total cost of computing each node value
exactly once. There are 2H−h right (respectively, left) nodes at height h, and
if computed independently, each costs 2h+1− 1 operations. Rounding up, this
is 2H+1 = 2N operations, or two per round. Adding together the costs for
each height h (0 ≤ h < H), we expect, on average, 2H = 2 log(N) operations
per round to be required.
1 This differs from the measurement of total computational cost, which includes,

e.g., the scheduling algorithm itself.
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Three Components. As with a digital signature scheme, the tree-traversal al-
gorithms consists of three components: key generation, output, and verifica-
tion. During key generation, the first authentication path and some upcoming
authentication node values are computed.

The output phase consists of N rounds, one for each leaf s ∈ {0, . . . , N−1}.
During round s, the authentication path for the sth leaf, Authi, i = 0, . . . , H−
1 is output. Additionally, the algorithm’s state is modified in order to prepare
for future outputs.

The verification phase is identical to the traditional verification phase for
Merkle trees described in Section 2.

Notation. In addition to denoting the current authentication nodes Authh,
we need some notation to describe the stacks used to compute upcoming
needed nodes. Define Stackh to be an object which contains a stack of node
values as in the description of the treehash algorithm in Section 2, Algorithm
2.1. Stackh.initialize and Stackh.update will be methods to setup and incre-
mentally execute treehash.

Algorithm presentation

Key Generation and Setup. The main task of key generation is to compute and
publish the root value. This is a direct application of the treehash algorithm
described in Section 2. In the process of this computation, every node value
is computed, and, it is important to record the initial values Authi, as well
as the upcoming values for each of the Authi.

If we denote the jth node at height h by νh[j], we have Authh = νh[1]
(these are right nodes). The “upcoming” authentication node at height h is
νh[0] (these are left nodes). These node values are used to initialize Stackh

to be in the state of the treehash algorithm having completed.

Algorithm 4.1 Key-Gen and Setup
1. Initial Authentication Nodes For each h ∈ {0, 1, . . . H − 1}:

Calculate Authh = νh[1].
2. Initial Next Nodes For each h ∈ {0, 1, . . . H − 1}:

Setup Stackh with the single node value Authh = νh[0].
3. Public Key Calculate and publish tree root, νH [0].

Output and Update. Merkle’s tree traversal algorithm runs one instance of
the treehash algorithm for each height h to compute the next authentication
node value for that level. Every 2h rounds, the authentication path will shift
to the right at level h, thus requiring a new node (its sibling) as the height h
authentication node.
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At each round the state of the treehash algorithm is updated with two
units of computation. After 2h rounds this node value computation will be
completed, and a new instance of treehash begins for the next authentication
node at that level.

To specify how to refresh the Auth nodes, we observe how to easily de-
termine which heights need updating: height h needs updating if and only if
2h divides s + 1 evenly, where s ∈ {0, . . . , N − 1} denotes the current round.
Furthermore, we note that at round s + 1 + 2h, the authentication path will
pass though the (s + 1 + 2h)/2hth node at height h. Thus, its sibling’s value,
(the new required upcoming Authh) is determined from the 2h leaf values
starting from leaf number (s + 1 + 2h)⊕ 2h, where ⊕ denotes bitwise XOR.

In this language, we summarize Merkle’s classic traversal algorithm in
Algorithm 4.2.

Algorithm 4.2 Classic Merkle Tree Traversal
1. Set s = 0.
2. Output:
• For each h ∈ [0, H − 1] output Authh.
3. Refresh Auth Nodes:

For all h such that 2h divides s + 1:
• Set Authh be the sole node value in Stackh.
• Set startnode = (s + 1 + 2h) ⊕ 2h.
• Stackh.initialize(startnode, h).
4. Build Stacks:

For all h ∈ [0, H − 1]:
• Stackh.update(2). (Each stack receives two updates)
5. Loop:
• Set s = s + 1.
• If s < 2H go to Step 2.

4.2 Fractal Merkle Tree Traversal

The term “fractal” was chosen due to the focus on many smaller binary trees
within the larger structure of the Merkle tree.

The crux of this algorithm is the selection of which node values to compute
and retain at each step of the output algorithm. We describe this selection by
using a collection of subtrees of fixed height h. We begin with some notation
and then provide the intuition for the algorithm.

Notation. Starting with a Merkle tree Tree of height H, we introduce further
notation to deal with subtrees. First we choose a subtree height h < H. We
let the altitude of a node ν in Tree be the length of the path from ν to a leaf
of Tree (therefore, the altitude of a leaf of Tree is zero). Consider a node ν
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with altitude at least h. We define the h-subtree at ν to be the unique subtree
in Tree which has ν as its root and which has height h. For simplicity in
the suite, we assume h is a divisor of H, and let the ratio, L = H/h, be the
number of levels of subtrees. We say that an h-subtree at ν is “at level i” when
it has altitude ih for some i ∈ {1, 2, . . . H}. For each i, there are 2H−ih such
h-subtrees at level i.

We say that a series of h-subtrees Treei (i = 1 . . . L) is a stacked series
of h-subtrees, if for all i < L the root of Treei is a leaf of Treei+1. We
illustrate the subtree notation and provide a visualization of a stacked series
of h-subtrees in Figure 5.

Fig. 5. (Left) The height of the Merkle tree is H, and thus, the number of leaves
is N = 2H . The height of each subtree is h. The altitude A(t1) and A(t2) of the
subtrees t1 and t2 is marked. (Right) Instead of storing all tree nodes, we store a
smaller set - those within the stacked subtrees. The leaf whose pre-image will be
output next is contained in the lowest-most subtree; the entire authentication path
is contained in the stacked set of subtrees.

Existing and Desired Subtrees

Static view. As previously mentioned, we store some portion of the node val-
ues, and update what values are stored over time. Specifically, during any
point of the output phase, there will exist a series of stacked existing sub-
trees, as in Figure 2. We say that we place a pebble on a node ν of the tree
Tree when we store this node. There are always L such subtrees Existi for
each i ∈ {1, . . . L}, with pebbles on each of their nodes (except their roots).
By design, for any leaf in Exist1, the corresponding authentication path is
completely contained in the stacked set of existing subtrees.

Dynamic view. Apart from the above set of existing subtrees, which contain
the next required authentication path, we will have a set of desired subtrees.
If the root of the tree Existi has index a, according to the ordering of the
height-ih nodes, then Desirei is defined to be the h-subtree with index a + 1
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(provided that a < 2H−i·h − 1). In case a = 2H−i·h − 1, then Existi is the
last subtree at this level, and there is no corresponding desired subtree. In
particular, there is never a desired subtree at level L. The left part of Figure 6
depicts the adjacent existing and desired subtrees.

As the name suggests, we need to compute the pebbles in the desired sub-
trees. This is accomplished by adapting an application of the treehash algo-
rithm (Section 2, Algorithm 2.1) to the root of Desirei. For these purposes,
the treehash algorithm is altered to save the pebbles needed for Desirei,
rather than discarding them, and secondly to terminate one round early, never
actually computing the root. Using this variant of treehash, we see that each
desired subtree being computed has a tail of saved intermediate pebbles. We
depict this dynamic computation in the right part of Figure 6, which shows
partially completed subtrees and their associated tails.

Fig. 6. (Left) The grey subtrees correspond to the existing subtrees (as in figure 5)
while the white subtrees correspond to the desired subtrees. As the existing sub-
trees are used up, the desired subtrees are gradually constructed. (Right) The figure
shows the set of desired subtrees from the previous figure, but with grey portions
corresponding to nodes that have been computed and dotted lines corresponding to
pebbles in the tail.

Algorithm Intuition

We now can present intuition for the main algorithm, and explain why the
existing subtrees Existi will always be available.

Overview. The goal of the traversal is to sequentially output authentication
paths. By design, the existing subtrees should always contain the next au-
thentication path to be output, while the desired subtrees contain more and
more completed pebbles with each round, until the existing subtree expires.
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When Existi is used in an output for the last time, we say that it dies. At
that time, the adjacent subtree, Desirei will need to have been completed,
i.e., have values assigned to all its nodes but its root (since the latter node
is already part of the parent tree.) The tree Existi is then reincarnated as
Desirei. First all the old pebbles of Existi are discarded; then the pebbles of
Desirei (and their associated values) taken by Existi. (Once this occurs, the
computation of the new and adjacent subtree Desirei will be initiated.) This
way, if one can ensure that the pebbles on trees Desirei are always computed
on time, one can see that there will always be completed existing subtrees
Existi.
Modifying the treehash algorithm. As mentioned above, our tool used to com-
pute the desired tree is a modified version of the classic treehash algorithm
applied to the root of Desirei. This version differs in that (1) it stops the
algorithm one round earlier (thereby skipping the root calculation), and (2)
every pebble of height greater than ih is saved into the tree Desirei. For pur-
poses of counting, we won’t consider such saved pebbles as part of the proper
tail.
Amortizing the computations. For a particular level i, we recall that the com-
putational cost for tree Desirei is 2 · 2ih − 2, as we omit the calculation of
the root. At the same time, we know that Existi will serve for 2ih output
rounds. We amortize the computation of Desirei over this period, by simply
computing two iterations of treehash each round. In fact, Desirei will be
ready before it is needed, exactly 1 round in advance!

Thus, for each level, allocating 2 computational units ensures that the
desired trees are completed on time. The total computation per round is thus
2(L− 1).

Solution and Algorithm Presentation

Three phases. We now describe more precisely the main algorithm. There are
three phases, the key generation phase; the output phase; and the verification
phase. During the key generation phase (which may be performed offline by
a relatively powerful computer), the root of the tree is computed and output,
taking the role of a public key. Additionally, the iterative output phase needs
some setup, namely the computation of pebbles on the initial existing subtrees.
These are stored on the computer performing the output phase.

The output phase consists of a number of rounds. During round s, the
authentication path of the sth leaf is output. In addition, some number of
pebbles are discarded and some number of pebbles are computed, in order to
prepare for future outputs.

The verification phase is identical to the traditional verification phase for
Merkle trees and has been described above. We remark again that the outputs
the algorithm generates will be indistinguishable from the outputs generated
by a traditional algorithm. Therefore, we do not detail the verification phase,
but merely the key generation phase and output phase.
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Key Generation. First, the pebbles of the left-most set of stacked existing
subtrees are computed and stored. Each associated pebble has a value, a
position, and a height. In addition, a list of desired subtrees is created, one for
each level i < L, each initialized with an empty stack for use in the modified
treehash algorithm.

Recalling the indexing of the leaves, indexed by s ∈ {0, 1, . . . N − 1}, we
initialize a counter Desirei.position to be 2ih, indicating which Merkle tree
leaf is to be computed next.

Algorithm 4.3 Key-Gen and Setup
1. Initial Subtrees For each i ∈ {1, 2, . . . L}:
• Calculate all (non-root) pebbles in existing subtree at level i.
• Create new empty desired subtree at each level i (except for i = L),

with leaf position initialized to 2ih.
2. Public Key Calculate and publish tree root.

Output and Update Phase. Each round of the execution phase consists of the
following portions: generating an output, death and reincarnation of existing
subtrees, and growing desired subtrees.

At round s, the output consists of the authentication path associated to
the sth leaf. The pebbles for this authentication path will be contained in the
existing subtrees.

When the last authentication path requiring pebbles from a given existing
subtree has been output, then the subtree is no longer useful, and we say that
it “dies.” By then, the corresponding desired subtree has been completed, and
the recently died existing subtree “reincarnates” as this completed desired
subtree. Notice that a new subtree at level i is needed once every 2ih rounds,
and so once per 2ih rounds the pebbles in the existing tree are discarded. More
technically, at round s, s = 0 (mod 2ih) the pebbles in the old tree Existi

are discarded; the completed tree Desirei becomes the new tree Existi; and
a new, empty desired subtree is created.

In the last step we grow each desired subtree that is not yet completed a
little bit. More specifically, we apply two computational units to the new or
already started invocations of the treehash algorithm. We concisely present
this algorithm as follows:

Time and Space Analysis

Time. As presented above, the algorithm allocates 2 computational units to
each desired subtree. Here, a computational unit is defined to be either a call
to Leafcalc, or the computation of a hash value. Since there are at most
L− 1 desired subtrees, the total computational cost per round is

Tmax = 2(L− 1) < 2H/h. (23)
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Algorithm 4.4 Stratified Merkle Tree Traversal
1. Set s = 0.
2. Output Authentication Path for leaf number s.
3. Next Subtree For each i ∈ {1, 2, . . . L} for which Existi is no longer needed,

i.e, s = 0 (mod 2hi):
• Remove Pebbles in Existi.
• Rename tree Desirei as tree Existi.
• Create new, empty tree Desirei (if s + 2hi < 2H).
4. Grow Subtrees For each i ∈ {1, 2, . . . h}: Grow tree Desirei by applying 2

units to the modified treehash algorithm (unless Desirei is completed).
5. Increment s and loop back to step 2 (while s < 2H).

Space. The total amount of space required by the algorithm, or equivalently,
the number of available pebbles required, may be bounded by simply counting
the contributions from (1) the existing subtrees, (2) the desired subtrees, and
(3) the tails.

First, there are L existing subtrees and up to L− 1 desired subtrees, and
each of these contains up to 2h+1 − 2 pebbles, since we do not store the
roots. Additionally, the tail associated to a desired subtree at level i > 1
contains at most h · i + 1 pebbles. If we count only the pebbles in the tail
which do not belong to the desired subtree, then this “proper” tail contains
at most h(i− 1) + 1 pebbles. Adding these contributions, we obtain the sum
(2L− 1)(2h+1 − 2) + h

∑L−2
i=1 i + 1 , and thus the bound:

Spacemax ≤ (2L− 1)(2h+1 − 2) + L− 2 + h(L− 2)(L− 1)/2. (24)

A marginally worse bound is simpler to write:

Spacemax < 2L 2h+1 + H L/2. (25)

Trade-offs. The solution just analyzed presents us with a trade-off between
time and space. In general, the larger the subtrees are, the faster the algorithm
will run, but the larger the space requirement will be. The parameter affecting
the space and time in this trade-off is h; in terms of h the computational cost
is below 2H/h, the space required is bounded above by 2L 2h+1 + H L/2.
Alternatively, and in terms of h, the space is bounded above by 2H 2h+1/h+
H2/2h.

Low Space Solution. If one is interested in parameters requiring little space,
there is an optimal h, due to the fact that for very small h, the number
of tail pebbles increases significantly (when H2/2h becomes large). An ap-
proximation of this value is h = log H. One could find the exact value by
differentiating the expression for the space: 2H 2h+1/h + H2/2h. For this
choice of h = log H = log log N , we obtain

Tmax =
2H

log H
. (26)
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Spacemax ≤
5
2
· H2

log H
. (27)

These results are interesting because they asymptotically improve Merkle’s
result from Section 4.1 with respect to both space and time. Merkle’s approach
required Tmax = 2H and Spacemax ≈ H2/2.

Additional Savings

We now return to the main algorithm, and explain how a small technical mod-
ification will improve the constants in the space bound, ultimately yielding
the claimed result.

Although this modification does not affect the complexity class of either
the space or time costs, it is of practical interest as it nearly halves the space
bound in certain cases. It is presented after the main exposition in order
to retain the original simplicity, as this analysis is slightly more technical.
The modification is based on two observations: (1) There may be pebbles in
existing subtrees which are no longer useful, and (2) The desired subtrees are
always in a state of partial completion. In fact, we have found that pebbles
in an existing subtree may be discarded nearly as fast as pebbles are entered
into the corresponding desired subtree. The modifications are as follows:

1. Discard pebbles in the trees Existi as soon as they will never again be
required.

2. Omit the first application of 2 units to the modified treehash algorithm.

We note that with the second modification, the desired subtrees still complete,
just in time. With these small changes, for all levels i < L, the number of peb-
bles contained in both Existi, and Desirei can be bounded by the following
expression.

Space
Existi

+ Space
Desirei

≤ 2ih+1 − 2 + (h− 2). (28)

This is nearly half of the previous bound of 2 · (2ih+1 − 2). We remark here
that the quantity h− 2 measures the maximum number of pebbles contained
in Desirei exceeding the number of pebbles contained in Existi which have
been discarded. Using the estimate (28), we revise the space bound computed
in the previous section to be

Spacemax ≤ (L)(2h+1− 2)+ (L− 1)(h− 2)+L− 2+h(L− 2)(L− 1)/2. (29)

We again round this up to obtain a simpler bound.

Spacemax < L 2h+1H L/2. (30)

Specializing to the choice h = log H, we improve the above result to

Spacemax ≤
3
2
· H2

log H
. (31)

by reducing the constant from 5/2 to 3/2.
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Proof of Space Bound. Here we prove the assertion of Equation (28) which
states for any level i the number of pebbles in the Existi plus the number of
pebbles in the Desirei is less than 2 ·2hi−2+(h−2). This basic observation
reflects the fact that the desired subtree can grow only slightly faster than the
existing subtree shrinks. Without loss of generality, in order to simplify the
exposition, we do not specify the subtree indices, and restrict our attention
to the first existing-desired subtree pair at a given level i.

The first modification ensures that pebbles are returned more continuously
than previously, so we quantify this. Subtree Existi, has 2h leaves, and as
each leaf is no longer required, neither may be some interior nodes above it.
These leaves are finished at rounds 2(i−1)ha − 1 for a ∈ {1, . . . 2h}. We may
determine the number of pebbles returned at these times by observing that a
leaf is returned every single round, a pebble at height i h+1 every two rounds,
one at height i h + 2 every four rounds, etc. We are interested in the number
returned at all times up to the time 2(i−1)ha−1; this is the sum of the greatest
integer functions:

A + [A/2] + [A/4] + [A/8] + . . . + [A/2h]

Writing a in binary notation a = a0 + 21a1 + 22a2 + . . . + 2hah, this sum is
also

a0(21 − 1) + a1 · (22 − 1) + a2 · (23 − 1) + . . . + ah(2h+1 − 1).

The cost to calculate the corresponding pebbles in Desirei may also be
calculated with a similar expression. Using the fact that a height h0 node
needs 2h0+1 − 1 units to compute, we see that the desired subtree requires

a0(2(i−1)h+1 − 1) + a1(2 · 2(i−1)h+2 − 1) + . . . + ah(2 · 2ih+1 − 1)

computational units to place those same pebbles. This cost is equal to 2 ·
2(i−1)h · a − z, where z denotes the number of nonzero digits in the binary
expansion of a.

At time 2(i−1) ha − 1, a total of 2 · 2(i−1) ha − 2 units of computation
has been applied to Desirei, (factoring in our 1 round delay). Noting that
2(i−1) h − 1 more rounds may pass before Existi loses any more pebbles, we
see that the maximal number of pebbles during this interval must be realized
at the very end of this interval. At this point in time, the desired subtree
has computed exactly the pebbles that have been removed from the existing
tree, plus whatever additional pebbles it can compute with its remaining 2 ·
2ih− 2 + z− 2 computational units. The next pebble, (a leaf) costs 2 · 2ih− 1
which leaves z−3 computational units. Even if all of these units result in new
pebbles, the total extra is still less than or equal to 1 + z − 3. Since z ≤ h,
this number of extra pebbles is bounded by h− 2, as claimed, and Equation
(28) is proved.
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4.3 Merkle Tree Traversal in Log Space and Time

Let us make some observations about the classic traversal algorithm from
Section 4.1. We see that with the classic algorithm above, up to H instances
of the treehash algorithm may be concurrently active, one for each height less
than H. One can conceptualize them as H processes running in parallel, each
requiring also a certain amount of space for the “tail nodes” of the treehash
algorithm, and receiving a budget of two hash value computations per round,
clearly enough to complete the 2h+1− 1 hash computations required over the
2h available rounds.

Because the stack employed by treehash may contain up to h + 1 node
values, we are only guaranteed a space bound of 1+2+· · ·+H. The possibility
of so many tail nodes is the source of the Ω(H2/2) space complexity in the
classic algorithm.

Considering that for the larger h, the treehash calculations have many
rounds to complete, it appears that it might be wasteful to save so many
intermediate nodes at once. Our idea is to schedule the concurrent treehash
calculations differently, so that at any given round s ∈ {0, . . . , 2H − 1}, the
associated stacks are mostly empty. We chose a schedule which generally fa-
vors computation of upcoming authentication nodes Authh for lower h, (be-
cause they are required sooner), but delays beginning of a new instance of
the treehash algorithm slightly, waiting until all stacks Stacki are partially
completed, containing no tail nodes of height less than h.

This delay, was motivated by the observation that in general, if the com-
putation of two nodes at the same height in different treehash stacks are
computed serially, rather than in parallel, less space will be used. Informally,
we call the delay in starting new stack computations “zipping up the tails”.
We will need to prove the fact, which is no longer obvious, that the upcoming
needed nodes will always be ready in time.

The New Traversal Algorithm

In this section we describe the new scheduling algorithm. Comparing to the
classic traversal algorithm, the only difference will be in how the budget of
2H hash function evaluations will be allocated among the potentially H con-
current treehash processes.

Define Stackh.low to be the height of the lowest node in Stackh, except
in two cases: if the stack is empty Stackh.low is defined to be h, and if the
treehash algorithm has completed Stackh.low is defined to be ∞.

Using the idea of zipping up the tails, there is more than one way to invent
a scheduling algorithm which will take advantage of this savings. The one we
present here is not optimal, but it is simple to describe. Additional practical
improvements are discussed in Section 4.5.

This version can be concisely described as follows. The upcoming needed
authentication nodes are computed as in the classic traversal, but the various
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Algorithm 4.5 Logarithmic Merkle Tree Traversal
1. Set s = 0.
2. Output:
• For each h ∈ [0, H − 1] output Authh.
3. Refresh Auth Nodes:

For all h such that 2h divides s + 1:
• Set Authh be the sole node value in Stackh.
• Set startnode = (s + 1 + 2h) ⊕ 2h.
• Stackh.initialize(startnode, h).
4. Build Stacks:

Repeat the following 2H − 1 times:
• Let lmin be the minimum of Stackh.low.
• Let focus be the least h so Stackh.low = lmin.
• Stackfocus.update.
5. Loop:
• Set s = s + 1.
• If s < 2H go to Step 2.

stacks do not all receive equal attention. Each treehash instance can be char-
acterized as being either not started, partially completed, or completed.

Our schedule prefers to complete Stackh for the lowest h values first,
unless another stack has a lower tail node. We express this preference by
defining lmin be the minimum of the h values Stackh.low, then choosing to
focus our attention on the smallest level h attaining this minimum. (setting
Stackh.low =∞ for completed stacks effectively skips them over).

In other words, all stacks must be completed to a stage where there are
no tail nodes at height h or less before we start a new Stackh treehash
computation. The final algorithm is summarized in Algorithm 4.5.

Correctness and Analysis

In this section we show that our computational budget of 2H − 1 is indeed
sufficient to complete every Stackh computation before it is required as an
authentication node. We also show that the space required for hash values is
less than 3H.

Nodes are Computed on Time. As presented above, the algorithm allocates
exactly a budget of 2H − 1 computational units per round to spend updating
the h stacks. Here, a computational unit is defined to be either a call to
Leafcalc, or the computation of a hash value. We do not model any extra
expense due to complex leaf calculations.

To prove this, we focus on a given height h, and consider the period starting
from the time Stackh is created and ending at the time when the upcoming
authentication node (denoted Needh here) is required to be completed. This
is not immediately clear, due to the complicated scheduling algorithm. Our
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approach to prove that Needh is completed on time is to showing that the
total budget over this period exceeds the cost of all nodes computed within
this period which can be computed before Needh.

The node Needh itself costs only 2h+1−1 units, a tractable amount given
that there are 2h rounds between the time Stackh is created, and the time
by which Needh must be completed. However, a non trivial calculation is
required, since in addition to the resources required by Needh, many other
nodes compete for the total budget of 2H2h computational units available
in this period. These nodes include all the future needed nodes Needi, (i <
h), for lower levels. Finally there may be a partial contribution to a node
Needi, i > h, so that its stack contains no low nodes by the time Needh is
computed.

It is easy to count the number of such needed nodes in the interval, and
we know the cost of each one. As for the contributions to higher stacks, we at
least know that the cost to raise any low node to height h must be less than
2h+1 − 1 (the total cost of a height h node). We summarize these quantities
and costs in the following figure.

Table 1. Nodes built during 2h rounds for Needh.

Node Type Quantity Cost each

Needh 1 2h+1 − 1

Needh−1 2 2h − 1
...

...
...

Needk 2h−k 2k+1 − 1
...

...
...

Need0 2h 1

Tail 1 ≤ 2h+1 − 2

We proceed to tally up the total cost incurred during the interval. Notice
that the row beginning Need0 requires a total of 2h+1 computational units.
For every other row in the node chart, the number of nodes of a given type
multiplied by the cost per node is less than 2h+1. There are h + 1 such rows,
so the total cost of all nodes represented in the chart is

TotalCosth < (h + 2)2h. (32)

For heights h ≤ H − 2, it is clear that this total cost is less than 2H2H . It is
also true for the remaining case of h = H − 1, because there are no tail nodes
in this case.

We conclude that, as claimed, the budget of 2H − 1 units per round is
indeed always sufficient to prepare Needh on time, for any 0 ≤ h < H.
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Space is Bounded by 3H. Our motivation leading to this relatively complex
scheduling is to use as little space as possible. To prove this, we simply add
up the quantities of each kind of node. We know there are always H nodes
Authh. Let C < H be the number of completed nodes Needh.

#Authi + #Needi = H + C. (33)

We must finally consider the number of tail nodes in the Stackh. As for
these, we observe that since a Stackh never becomes active until all nodes in
“higher” stacks are of height at least h, there can never be two distinct stacks,
each containing a node of the same height. Furthermore, recalling algorithm
treehash, we know there is at most one height for which a stack has two node
values. In all, there is at most one tail node at each height (0 ≤ h ≤ H − 3),
plus up to one additional tail node per non-completed stack. Thus

#Tail ≤ H − 2 + (H − C). (34)

Adding all types of nodes we obtain:

#Authi + #Needi + #Tail ≤ 3H − 2. (35)

This proves the assertion. There are at most 3H − 2 stored nodes.

4.4 Asymptotic Optimality Result

An interesting optimality result states that a traversal algorithm can never
beat both time O(log(N)) and space O(log(N)). It is clear that at least H−2
nodes are required for the treehash algorithm, so our task is essentially to
show that if space is limited by any constant multiple of log(N), then the
computational complexity must be Ω(log(N)). Let us be clear that this theo-
rem does not quantify the constants. Clearly, with greater space, computation
time can be reduced.

Theorem 1. Suppose that there is a Merkle tree traversal algorithm for which
the space is bounded by α log(N). Then there exists some constant β so that
the time required is at least β log(N).

The theorem simply states that it is not possible to reduce space complexity
below logarithmic without increasing the time complexity beyond logarithmic!

The proof of this technical statement is found in the upcoming subsection,
but we will briefly describe the approach here. We consider only right nodes
for the proof. We divide all right nodes into two groups: those which must be
computed (at a cost of 2h+1−1), and those which have been saved from some
earlier calculation. The proof assumes a sub-logarithmic time complexity and
derives a contradiction.

The more nodes in the second category, the faster the traversal can go.
However, such a large quantity of nodes would be required to be saved in order
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to reduce the time complexity to sub-logarithmic, that the average number of
saved node values would have to exceed a linear amount! The rather technical
proof presented next uses a certain sequence of subtrees to formulate the
contradiction.

We now begin the technical proof of Theorem 1. This will be a proof by
contradiction. We assume that the time complexity is sub logarithmic, and
show that this is incompatible with the assumption that the space complexity
is O(log(N)). Our strategy to produce a contradiction is to find a bound on
some linear combination of the average time and the average amount of space
consumed.

Notation. The theorem is an asymptotic statement, so we will be considering
trees of height H = log(N), for large H. We need to consider L levels of
subtrees of height k, where kL = H. Within the main tree, the roots of these
subtrees will be at heights k, 2 · k, 3 · k . . . H. We say that the subtree is at
level i if its root is at height (i + 1)k. This subtree notation is similar to that
used in Section 4.2.

Note that we will only need to consider right nodes to complete our ar-
gument. Recall that during a complete tree traversal every single right node
is eventually output as part of the authentication data. This prompts us to
categorize the right nodes in three classes.

1. Those already present after the key generation: free nodes.
2. Those explicitly calculated (e.g. with treehash): computed nodes.
3. Those retained from another node’s calculation (e.g from another node’s

treehash): saved nodes.

Notice how type 2 nodes require computational effort, whereas type 1 and
type 3 nodes require some period of storage. We need further notation to
conveniently reason about these nodes. Let ai denote the number of level i
subtrees which contain at least 1 non-root computed (right) node. Similarly,
let bi denote the number of level i subtrees which contain zero computed nodes.
Just by counting the total number of level i subtrees we have the relation.

ai + bi = N/2(i+1)k. (36)

Computational costs. Let us tally the cost of some of the computed nodes.
There are ai subtrees containing a node of type 2, which must be of height at
least ik. Each such node will cost at least 2ik+1 − 1 operations to compute.
Rounding down, we find a simple lower bound for the cost of the nodes at
level i.

Cost >
L−1∑
i=0

(ai2ik). (37)

Storage costs. Let us tally the lifespans of some of the retained nodes. Mea-
suring units of Space × Rounds is natural when considering average space
consumed. In general, a saved node, S, results from a calculation of some
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computed node C, say, located at height h. We know that S has been pro-
duced before C is even needed, and S will never become an authentication
node before C is discarded. We conclude that such a node S must therefore
be stored in memory for at least 2h rounds.

Even (most of) the free nodes at height h remain in memory for at least
2h+1 rounds. In fact, there can be at most one exception: the first right node
at level h.

Now consider one of the bi subtrees at level i containing only free or stored
nodes. Except for the leftmost subtree at each level, which may contain a free
node waiting in memory less than 2(i+1)k rounds, every other node in this
subtree takes up space for at least 2(i+1)k rounds. There are 2k − 1 nodes in
a subtree and thus we find a simple lower bound on the Space× Rounds.

Space× Rounds ≥
L−1∑
i=0

(bi − 1)(2k − 1)2(i+1)k. (38)

Note that the (bi − 1) term reflects the possible omission of the leftmost
level i subtree.

Mixed Bounds. We can now use simple algebra with Equations (36), (37), and
(38) to yield combined bounds. First the cost is related to the bi, which is then
related to a space bound.

2kCost >

L−1∑
i=0

ai2(i+1)k =
L−1∑
i=0

N − 2(i+1)kbi. (39)

As series of similar algebraic manipulations finally yield (somewhat weaker)
very useful bounds.

2kCost +
L−1∑
i=0

2(i+1)kbi > NL. (40)

2kCost +
L−1∑
i=0

2(i+1)k

2k−1
+

Space× Rounds
2k−1

> NL (41)

2kCost + 2N +
Space× Rounds

2k−1
> NL (42)

2kAverageCost +
AverageSpace

2k−1
> (L− 2) ≥ L

2
(43)

k2k+1AverageCost +
k

2k−2
AverageSpace >

L

2
· 2k = H. (44)

This last bound on the sum of average cost and space requirements will allow
us to find a contradiction.
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Proof by Contradiction. Let us assume the opposite of the statement of Theo-
rem 1. Then there is some α such that the space is bounded above by α log(N).
Secondly, the time complexity is supposed to be sub-logarithmic, so for every
small β the time required is less than β log(N) for sufficiently large N .

With these assumptions we are now able to choose a useful value of k. We
pick k to be large enough so that α > 1/k2k+3. We also choose β to be less
than 1/k2k+2. With these choices we obtain two relations.

k2k+1AverageCost <
H

2
(45)

k/2k−2AverageSpace <
H

2
(46)

By adding these two last equations, we contradict Equation (44).
QED.

4.5 Improvement of the Log Traversal Algorithm

In this section we describe improvements of the algorithm described in Sec-
tion 4.3 which are very useful for practical implementations. The main dif-
ferences are the following. Since left authentication nodes can be computed
much cheaper than right nodes, the computation of left and right authenti-
cation nodes is done differently. In many cases the number of expensive leaf
computations is reduced. Instead of using a separate stack for each instance
of the treehash algorithm one shared stack is used. Input for the algorithm is
an index s ∈ {0, 1, . . . , 2H − 2}. The algorithm determines the authentication
path Auth = (Auth0, . . . ,AuthH−1) for leaf s + 1.

As before, we denote the nodes in the Merkle tree by νh[j], where h =
H, . . . , 0 denotes the height of the node in the tree of height H. Leaves have
height 0 and the root has height H. MSS uses a cryptographic hash function
g : {0, 1}∗ → {0, 1}n.

The algorithm determines τ = max{h : 2h|(s + 1)} which is the height of
the first ancestor of the sth leaf which is a left child. If leaf s is a left child
itself, then τ = 0. Figure 7 shows an example.

s = 3

Right node

Left node

τ = 2

Fig. 7. The height of the first ancestor of leaf s that is a left child is τ = 2. The
dashed nodes denote the authentication path for leaf s. The arrows indicate the path
from leaf s to the root.
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The value τ is used to determine on which heights the authentication path
for leaf s+1 requires new nodes. The authentication path for leaf s+1 requires
new right authentication nodes on heights h = 0, . . . , τ − 1 and one new left
authentication node on height τ .

Computing left and right authentication nodes

Computing left nodes. As explained above, we require the left node Authτ for
the next authentication path. If τ = 0, then we set Auth0 to Leafcalc(s).
Let τ > 0. Then leaf s is a right child. Also, Authτ−1 is the left child of
Authτ . We assume that the right child of Authτ is stored in Keepτ−1. Then
the new node Authτ is computed as

Authτ = g
(
Authτ−1‖Keepτ−1

)
. (47)

This requires only one hash evaluation. We also explain how Keep is updated.
If �s/2τ+1	 = 0 (mod 2), i.e. if the ancestor on height τ + 1 is a left child,
then Authτ is a right node and we store it in Keepτ .

Computing right nodes. Unlike authentication nodes that are left children,
right authentication nodes are computed from scratch, i.e. starting from the
leaves. This is because none of their child nodes were used in previous authen-
tication paths. As before we use the treehash algorithm (Section 2, Algorithm
2.1) for this task.

We use two different methods for computing right nodes. To distinguish
those cases we select a positive integer K ≥ 2 such that H−K is even. Suppose
that we wish to compute a right node on height h. If H −K ≤ h ≤ H − 2,
then the right node on height h is calculated by Retainh.pop() which pops
the top element from a stack Retainh. That stack has been filled with the
right nodes νh[3], . . . , νh[2H−h − 1] during MSS key generation. This is very
useful since the nodes close to the root are expensive to compute.

For the computation of a right node on height h with h < H − K we
use an instance Treehashh of the treehash algorithm. It is allowed to store
one node. Initially, during MSS key generation, the second right node νh[3]
is stored in Treehashh. The treehash instances all share one stack. When it
comes to determining a right authentication node on height h this is simply
done by Treehashh.pop() for h = 0, . . . ,min{H − K − 1, τ − 1}. Then all
treehash instances for heights h = 0, . . . ,min{H−K−1, τ −1} are initialized
for the computation of the next right node. The index of the leaf they have
to begin with is s + 1 + 3 · 2h and the initialization is done using the method
Treehashh.initialize(s+1+3 ·2h). Then the algorithm updates the treehash
instances using the Treehashh.update() method. One update corresponds
to one round of Algorithm 2.1, i.e. to computing one leaf and computing this
leaf’s parent nodes using tail nodes stored on the stack.

We allow a budget of (H − K)/2 updates in each round. We use the
strategy from Section 4.3 to decide which of the H − K treehash instances
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receives an update. For this, we need the method Treehashh.height() which
returns the height of the lowest tail node stored by this treehash instance,
either on the stack or in the treehash instance itself. If Treehashh does
not store any tail nodes Treehashh.height() returns h and if Treehashh

is finished or not initialized Treehashh.height() returns ∞ to skip these
instances. The treehash instance that receives an update is the instance where
Treehashh.height() returns the smallest value. If there is more than one such
instance, we choose the one with the lowest index.

The algorithm

Initialization. The initialization of our algorithm is done during the MSS key
pair generation. We store the authentication path for the first leaf (s = 0):
Authh = νh[1], h = 0, . . . , H − 1. Depending on the parameter K, we store
the next right authentication node for each height h = 0, . . . , H − K − 1
in the treehash instances: Treehashh.push(νh[3]). Finally we store the
right authentication nodes close to the root using the stacks Retainh:
Retainh.push(νh[2j+3]) for h = H−K, . . . ,H−2 and j = 2H−h−1−2, . . . , 0.

Update and output phase. Algorithm 4.6 contains the precise description. In-
put is the index of the current leaf s ∈ {0, . . . , 2H − 2}, the parameters H,K
and the algorithm state Auth,Keep,Retain,Treehash prepared in previ-
ous rounds or the initialization. Output is the authentication path for the next
leaf s + 1.

Correctness and analysis

In this section we show the correctness of Algorithm 4.6 and estimate its time
and space requirements. First we show that the budget of (H−K)/2 updates
per round is sufficient for the treehash instances to compute the nodes on
time. Then we show that it is possible for all treehash instances to share a
single stack. Next, we consider the time and space requirements of Algorithm
4.6. In detail we show that

i) The number of tail nodes stored on the stack is bounded by H −K − 2.
ii) The number of hashes per round is bounded by 3(H −K − 1)/2.
iii) The number of nodes stored in Keep is bounded by �H/2	+ 1.

To estimate the space complexity, we have to add the H nodes stored in Auth,
the H −K nodes stored in Treehash and the 2K −K − 1 nodes stored in
Retain. To estimate the time complexity, we have to add the (H −K)/2 leaf
computations required to determine right nodes and one leaf and one hash to
compute left nodes (Lines 3, 4a in Algorithm 4.6). Summing up the total time
and space requirements results in the following theorem.
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Algorithm 4.6 Authentication path computation
Input: s ∈ {0, . . . , 2H − 2}, H, K and the algorithm state.
Output: Authentication path for leaf s + 1

1. Let τ = 0 if leaf s is a left node or let τ be the height of the first parent of leaf
s which is a left node:
τ ← max{h : 2h|(s + 1)}

2. If the parent of leaf s on height τ + 1 is a left node, store the current authenti-
cation node on height τ in Keepτ :
if 
s/2τ+1� is even and τ < H − 1 then Keepτ ← Authτ

3. If leaf s is a left node, it is required for the authentication path of leaf s + 1:
if τ = 0 then Auth0 ← Leafcalc(s)

4. Otherwise, if leaf s is a right node, the authentication path for leaf s+1 changes
on heights 0, . . . , τ :
if τ > 0 then
a) The authentication path for leaf s + 1 requires a new left node on height τ .

It is computed using the current authentication node on height τ − 1 and
the node on height τ − 1 previously stored in Keepτ−1. The node stored in
Keepτ−1 can then be removed:
Authτ ← g(Authτ−1||Keepτ−1), remove Keepτ−1

b) The authentication path for leaf s + 1 requires new right nodes on heights
h = 0, . . . , τ − 1. For h < H −K these nodes are stored in Treehashh and
for h ≥ H − K in Retainh:
for h = 0 to τ − 1 do

if h < H − K then Authh ← Treehashh.pop()
if h ≥ H − K then Authh ← Retainh.pop()

c) For heights 0, . . . , min{τ − 1, H − K − 1} the treehash instances must be
initialized anew. The treehash instance on height h is initialized with the
start index s + 1 + 3 · 2h < 2H :
for h = 0 to min{τ − 1, H −K − 1} do Treehashh.initialize(s+1+3 · 2h)

5. Next we spend the budget of (H − K)/2 updates on the treehash instances to
prepare upcoming authentication nodes:
repeat (H − K)/2 times
a) We consider only stacks which are initialized and not finished. Let k be the

index of the treehash instance whose lowest tail node has the lowest height.
In case there is more than one such instance we choose the instance with
the lowest index:
k ← min

{
h : Treehashh.height() = min

j=0,...,H−K−1
{Treehashj .height()}

}

b) The treehash instance with index k receives one update:
Treehashk.update()

6. The last step is to output the authentication path for leaf s + 1:
return Auth0, . . . ,AuthH−1.
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Theorem 2. Let H ≥ 2 and K ≥ 2 such that H −K is even. Algorithm 4.6
stores at most 3H + �H/2	 − 3K − 2 + 2K nodes, where each node requires n
bits of memory. Further, the algorithm requires at most (H − K)/2 + 1 leaf
computations and 3(H −K − 1)/2 + 1 hash function evaluations per round to
successively compute authentication paths.

Nodes are computed on time. If Treehashh is initialized in round s, the
authentication node on height h computed by this instance is required in
round s + 2h+1. In these 2h+1 rounds there are (H −K)2h updates available.
Treehashh requires 2h updates. During the 2h+1 rounds, 2h+1/2i+1 treehash
instances are initialized on heights i = 0, . . . , h− 1, each requiring 2i updates.
In addition, active treehash instances on heights i = h + 1, . . . , H − K − 1
might receive updates until their lowest tail node has height h, thus requiring
at most 2h updates.

Summing up the number of updates required by all treehash instances
yields

h−1∑
i=0

2h+1

2i+1
· 2i + 2h +

H−K−1∑
i=h+1

2h = (H −K)2h (48)

as an upper bound for the number of updates required to finish Treehashh

on time. For h = H −K − 1 this bound is tight.

Sharing a single stack works. To show that it is possible for all treehash in-
stances to share a single stack, we have to show that if Treehashh receives
an update and has tail nodes stored on the stack, all these tail nodes are on
top of the stack.

When Treehashh receives its first update, the height of the lowest tail
node of Treehashi, i ∈ {h + 1, . . . , H − K − 1} is at least h. This means
that Treehashh is completed before Treehashi receives another update and
thus tail nodes of higher treehash instances do not interfere with tail nodes of
Treehashh.

While Treehashh is active and stores tail nodes on the stack, it is possible
that treehash instances on lower heights i ∈ {0, . . . , h−1} receive updates and
store nodes on the stack. If Treehashi receives an update, the height of the
lowest tail node of Treehashh has height ≥ i. This implies that Treehashi

is completed before Treehashh receives another update and therefore doesn’t
store any tail nodes on the stack.

Space required by the stack. We will show that the stack stores at most one
tail node on each height h = 0, . . . , H − K − 3 at a time. Treehashh, h ∈
{0, . . . , H −K − 1} stores up to h tail nodes on different heights to compute
the authentication node on height h. The tail node on height h−1 is stored by
the treehash instance and the remaining tail nodes on heights 0, . . . , h− 2 are
stored on the stack. When Treehashh receives its first update, the following
two conditions hold: (1) all treehash instances on heights < h are either empty
or completed and store no tail nodes on the stack. (2) All treehash instances
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on heights > h are either empty or completed or have tail nodes of height at
least h. If a treehash instance on height i ∈ {h+1, . . . , H−K−1} stores a tail
node on the stack, then all treehash instances on heights i + 1, . . . , H −K − 1
have tail nodes of height at least i, otherwise the treehash instance on height
i wouldn’t have received any updates in the first place. This shows that there
is at most one tail node on each height h = 0, . . . , H −K − 3 which bounds
the number of nodes stored on the stack by H −K − 2. This bound is tight
for round s = 2H−K+1 − 2, before the update that completes the treehash
instance on height H −K − 1.

Number of hashes required per round. For now we assume that the maxi-
mum number of hash function evaluations is required in the following case:
TreehashH−K−1 receives all u = (H − K)/2 updates and is completed in
this round. On input an index s, the number of hashes required by the tree-
hash algorithm is equal to the height of the first parent of leaf s which is a
left node. On height h, a left node occurs every 2h leaves, which means that
every 2h updates at least h hashes are required by treehash. During the u
available updates, there are �u/2h� updates that require at least h hashes for
h = 1, . . . , �log2 u�. The last update requires H −K − 1 = 2u − 1 hashes to
complete the treehash instance on height H −K − 1. So far only �log2 u� of
these hashes were counted, so we have to add another 2u−1−�log2 u� hashes.
In total, we get the following upper bound for the number of hashes required
per round.

B =
�log2 u�∑

h=1

⌈ u

2h

⌉
+ 2u− 1− �log2 u� (49)

In round s = 2H−K+1−2 this bound is tight. This is the last round before the
treehash instance on height H −K − 1 must be completed and as explained
above, all available updates are required in this case. The desired upper bound
is estimated as follows:

B ≤
�log2 u�∑

h=1

( u

2h
+ 1
)

+ 2u− 1− �log2 u�

= u

�log2 u�∑
h=1

1
2h

+ 2u− 1 = u

(
1− 1

2�log2 u�

)
+ 2u− 1

≤ u

(
1− 1

2u

)
+ 2u− 1 = 3u− 3

2
=

3
2
(H −K − 1)

The next step is to show that the above mentioned case is indeed the worst
case. If a treehash instance on height < H −K − 1 receives all updates and is
completed in this round, less than B hashes are required. The same holds if
the treehash instance receives all updates but is not completed in this round.
The last case to consider is the one where the u available updates are spend on
treehash instances on different heights. If the active treehash instance has a tail
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node on height j, it will receive updates until it has a tail node on height j+1,
which requires 2j updates and 2j hashes. Additional t ∈ {1, . . . , H−K−j−2}
hashes are required to compute the parent of this node on height j + t + 1,
if the active treehash instance stores tail nodes on heights j + 1, . . . , j + t on
the stack and in the treehash instance itself. The next treehash instance that
receives updates has a tail node of height ≥ j. Since the stack stores at most
one tail node for each height, this instance can receive additional hashes only
if there are enough updates to compute a tail node on height ≥ j + t, the
height of the next tail node possibly stored on the stack. But this is the same
scenario that appears in the above mentioned worst case, i.e. if a node on
height j + 1 is computed, the tail nodes on the stack are used to compute its
parent on height j + t + 1 and the same instance receives the next update.

Space required to compute left nodes. First we show that whenever an au-
thentication node is stored in Keeph, h = 1, . . . , H − 2, the node stored in
Keeph−1 is removed in the same round. This immediately follows from Steps
2 and 4a in Algorithm 4.6. Second we show that if a node gets stored in
Keeph, h = 0, . . . , H − 3, then Keeph+1 is empty. To see this we have to
consider in which rounds a node is stored in Keeph+1. This is true for rounds
s ∈ Aa = {2h+1 − 1 + a · 2h+3, . . . , 2h+2 − 1 + a · 2h+3}, a ∈ N0. In rounds
s′ = 2h − 1 + b · 2h+2, b ∈ N0, a node gets stored in Keeph. It is straight
forward to compute that s′ ∈ Aa implies that 2a + 1/4 ≤ b ≤ 2a + 3/4 which
is a contradiction to b ∈ N0.

As a result, at most �H/2	 nodes are stored in Keep at a time and two
consecutive nodes can share one entry. One additional entry is required to
temporarily store the authentication node on height h (Step 2) until node on
height h− 1 is removed (Step 4a).

Computing leaves using an PRNG

In Section 3, we showed how a PRNG can be used during MSS key pair and
signature generation to reduce the private key size. We will now show how
to use this concept in Algorithm 4.6 to compute the required leaves using an
PRNG. Let Seeds denote the seed required to compute the one-time key pair
corresponding to the sth leaf.

During the authentication path computation, leaves which are up to 3 ·
2H−K−1 steps away from the current leaf must be computed by the treehash
instances. Calling the PRNG that many times to obtain the seed required to
compute this leaf is too inefficient. Instead we use the following scheduling
strategy that requires H − K calls to the PRNG in each round to compute
the seeds. We have to store two seeds for each height h = 0, . . . , H −K − 1.
The first (SeedActive) is used to successively compute the leaves for the
authentication node currently constructed by Treehashh and the second
(SeedNext) is used for upcoming right nodes on this height. SeedNext

is updated using the PRNG in each round. During the initialization, we set
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SeedNexth = Seed3·2h for h = 0, . . . , H −K − 1. In each round, at first all
seeds SeedNexth are updated using the PRNG. If in round s a new treehash
instance is initialized on height h, we copy SeedNexth to SeedActiveh. In
that case SeedNexth = Seedϕ+1+3·2h holds and thus is the correct seed to
begin computing the next authentication node on height h.

The time and space requirements of Algorithm 4.6 change as follows. We
have to store additional 2(H−K) seeds and each seed requires n bit of memory.
We also require additional H −K calls to the PRNG in each round.

Theorem 3. Let H ≥ 2 and K ≥ 2 such that H −K is even. The memory
requirements of Algorithm 4.6 in combination with a PRNG are

(
5H +

⌊
H

2

⌋
− 5K − 2 + 2K

)
· n bit. (50)

Further, it requires at most (H − K)/2 + 1 leaf computations, 3(H − K −
1)/2 + 1 hash function evaluations, and H −K calls to the PRNG per round
to successively compute authentication paths.

5 Tree chaining

In Section 2 we saw that MSS public key generation requires the computation
of the full Merkle hash tree. This means that 2H leaves and 2H − 1 inner
nodes have to be determined, which is very time consuming when H is large.
The tree chaining method [4] solves this problem. The basic idea is similar
to the Fractal Merkle Tree Traversal described in Section 4.2. However, in
contrast to the Fractal Tree Traversal Method, tree chaining does not split
the Merkle tree into smaller subtrees, but instead uses smaller Merkle trees
that are independent of each other. The Merkle signature scheme that uses
tree chaining is referred to as CMSS.

5.1 The idea

We explain the tree chaining idea. CMSS uses T ≥ 2 layers of Merkle trees.
Each Merkle tree on each layer is constructed using the Method from Sec-
tions 2 and 3. The hashes of a sequence of one-time verification keys are the
leafs. We call the corresponding one-time signature keys the signature keys of
the Merkle tree. Those signature keys are calculated using a pseudo random
number generator. We call the respective seed the seed of the Merke tree.

The root of the single tree on the top layer 1 is the public CMSS key. The
signature keys of the Merkle trees on the bottom layer T are used to sign
documents. The signature keys of the Merkle trees on the intermediate layers
i, 1 ≤ i < T sign the roots of the Merkle trees on layer i + 1.

This is what a tree chaining signature looks like:
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σ =
(
s, SigT , YT ,AuthT

SigT−1, YT−1,AuthT−1

...
Sig1, Y1,Auth1

)
.

(51)

SigT is the one-time signature of the document to be signed. It is gen-
erated using a signature key of a Merkle tree on the bottom layer T . The
corresponding verification key is YT . Also, AuthT is the authentication path
that allows a verifier to construct the path from the verification key YT to the
root of the corresponding Merkle tree on the bottom layer. Now that root is
not known to the verifier. Therefore, the one-time signature SigT−1 of that
root is also included in the signature σ. It is constructed using a signature key
of a Merkle tree on level T − 1. The corresponding verification key YT−1 and
authentication path AuthT−1 are also included in the signature σ. The root
of the tree on layer T − 1 is also not known to the verifier, unless T = 2 in
which case T − 1 = 1 and that root is the public key. So further one-time sig-
natures of roots Sigi, one-time verification keys Yi, and authentication paths
Authi, i = T − 1, . . . , 1 are included in the signature σ.

The signature σ is verified as follows. The verifier checks, that SigT can
be verified using YT . Next, he uses YT and AuthT to construct the root of a
Merkle tree on layer T . He verifies the signature SigT−1 of that root using the
verification key YT−1 and constructs the root of the corresponding Merkle tree
on layer T − 1 from YT−1 and AuthT−1. The verifier iterates this procedure
until the root of the single tree on layer 1 is constructed. The signature is
verified by comparing this root to the public key. If any of those comparisons
fails then the signature σ is rejected. Otherwise, it is accepted.

We discuss the advantage of the tree chaining method. For this purpose, we
first compute the number of signatures that can be verified using one public
key when the tree chaining method is applied. All Merkle trees on layer i have
the same height Hi, 1 ≤ i ≤ T . As mentioned already, there is a single Merkle
tree on the top layer 1. Since the Merkle trees on layer i are used to sign the
roots of the Merkle trees on layer i+1, 1 ≤ i < T , the number of Merkle trees
on layer i + 1 is 2H1+H2+...+Hi . So the total number of documents that can
be signed/verified is 2H where H = H1 + H2 + . . . + HT .

The advantage of the tree chaining construction is the following. The gen-
eration of a public MSS key that can verify 2H documents requires the con-
struction of a tree of height H, which in turn requires the computation of
2H one-time key pairs and 2H+1 − 1 evaluations of the hash fuction. When
tree chaining is used, the construction of a public CMSS key that can verify
2H documents only requires the construction of the single Merkle tree on the
top layer which is of height H1. Also, in the tree chaining method, signa-
ture generation requires knowledge of the one-time signature of the root of
one Merkle tree on each layer. Those roots and one-time signatures can be
successively computed as they are used, whereas the root of the first tree on
each layer is generated during the key generation. Hence, the CMSS key pair
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generation requires the computation of 2H1 + . . .+2HT one-time key pairs and
2H1+1 + . . . + 2HT +1 − T evaluations of the hash function. This is a drastic
improvement compared to the original MSS key pair generation as illustrated
in the following example.

Example 5. Assume that the heights of all Merkle trees are equal, so H1 =
. . . = HT = H. The number of signatures that can be generated with this key
pair is 2TH . The CMSS key pair generation requires T2H one-time key pairs
and T2H+1 − T evaluations of the hash function. The original MSS key pair
generation requires 2TH one-time key pairs and 2TH+1 − 1 evaluations of the
hash function.

sT

s2

s1

ROOT2

ROOTT

TREET

ROOT1

TREE1

TREE2

SIG1

SIG2

Fig. 8. The tree chaining method. Treei denotes the active tree on layer i, Rooti

its root, and Sigi−1 this root’s one-time signature generated with the si−1th signa-
ture key of the tree on layer i − 1.

CMSS key pair generation

For the CMSS key pair generation, the number of layers T and the respective
heights Hi, 1 ≤ i ≤ T of the trees on layer i are selected. With H = H1+H2+
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. . . + HT the number of signatures that can be generated/verified using the
key pair to be constructed is 2H . For each layer, one initial Merkle tree Treei

is constructed as described in Sections 2 and 3. The CMSS public key is the
root of Tree1. The CMSS secret key is the sequence of the random seeds used
to construct the T trees. The signer also stores the one-time signatures of the
roots of all those trees generated with the first signature key of the tree on
the next layer.

CMSS key pair generation requires the computation of 2H1 +. . .+2HT one-
time key pairs and 2H1+1 + . . . + 2HT +1 − T evaluations of the hash function.

CMSS signature generation

We use the notation of the previous sections. When a signature is issued, the
signer knows one active Merkle tree Treei for each layer and the seed Seedi

from which its signature keys can be generated, i = 1, 2, . . . , T . The signer
also knows the signature Sigi of the root of Treei+1, and the verification key
Yi for that signature, 1 ≤ i ≤ T − 1. Further, the signer knows the index si,
1 ≤ i ≤ T − 1, of the signature key used to generate the signature Sigi of
the root of the tree Treei+1 and the index sT of the signature key used to
issue the next document signature. The signer constructs the corresponding
signature key from the seed SeedT , he generates the one-time signature SigT

of the document to be signed and he generates the signature as in Equation
(51). The index s in this signature can be recursively computed. Set t1 = s1

and
ti+1 = ti2Hi+1 + si+1, 1 ≤ i < T,

then s = tT .
After signing, the signer prepares for the next signature by partially con-

structing the next tree on certain layers using the treehash algorithm of Sec-
tion 2. He first computes the sT th leaf of the next tree on layer T and exe-
cutes the treehash algorithm with this leaf as input. Then he increments sT .
If sT = 2HT , then the construction of the next Merkle tree on layer T is com-
pleted and its root is available. The signer computes the one-time signature
of this root using a signature key of the tree on layer T − 1 and sets the index
sT to zero. In the same way, the signer constructs the next tree on layer T −1
and increments the index sT−1. More generally, the signer partially constructs
the next tree on layer i and increments si whenever the construction of the
next tree on layer i + 1 is complete, 1 < i < T . On layer 1, no new tree
is required and the signer only increments the index s1 if the construction
of a tree on layer 2 is completed. When s1 = 2H1 , CMSS cannot sign new
documents anymore.

Since a CMSS signature consists of T MSS signatures, the signature size
increases by a factor T compared to MSS. Also, the computation of the roots
of the following trees and their signatures increases the signature generation
time.
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CMSS verification

The basics of the CMSS signature verification are straight forward and were
already explained above.

We now explain how the verifier uses s to determine a positive integer si

for each layer i, such that Yi is the sith verification key of the active tree on
that layer. The verifier uses si to construct the path from Yi to the root of
the corresponding tree on layer i (see Section 2). The following formulas show
how this can be accomplished.

jT = �s/2HT 	, ji = �ji+1/2Hi	, i = T − 1, . . . , 1

sT = s mod 2HT , si = ji+1 mod 2Hi , i = T − 1, . . . , 1
(52)

6 Distributed signature generation

In this section, we describe distributed signature generation [4]. This method
counteracts the new problems that arise when using the tree chaining method,
namely the increased signature size and signature generation time. It is based
on the observation that the one-time signatures of the roots and the authenti-
cation paths in upper layers change only infrequently. The idea is to distribute
the operations required for the generation of these one-time signatures and
authentication paths evenly across each step. This significantly improves the
worst case signature generation time. Recall Section 1.2, where we showed that
the Winternitz one-time signature scheme uses the parameter w to provide a
trade-off between the signature generation time and the signature size. Using
the method of distributed signature generation it is possible to choose large
values of w for upper layers, which in turn results in smaller signatures. The
combination of the tree chaining method, the distributed signature generation,
and the original MSS is called GMSS.

The idea

Fix a layer i ≥ 2. Denote the active tree on layer i by Treei. It is currently
used to sign roots or documents. The preceding tree on that layer is denoted
by TreePrevi. The next tree on layer i is TreeNexti. The idea of the
distributed signature generation is the following. When Treei is used, the
root of TreeNexti is known. The root of TreeNexti is signed while the
signature keys of Treei are used. The root of TreeNexti was calculated
while TreePrevi was used to sign documents or roots.

Distributed root signing

We use the notation from above. We explain how the root of TreeNexti is
signed while Treei is used to sign. By construction, the necessary signature
key from layer i− 1 is known.
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We distribute the computation of the signature of the root of TreeNexti

across the leaves of Treei. When the first leaf of Treei is used we initialize
the Winternitz one-time signature generation by calculating the parameters
and executing the padding. Then we calculate the number of hash function
evaluations and calls to the PRNG required to compute the one-time signature
key and the one-time signature. We divide those numbers by 2Hi where Hi is
the height of Treei to estimate the number of operations required per step.
When a leaf of Treei is used, the appropriate amount of computation for the
signature of the root of TreeNexti is performed. The distributed generation
of the one-time signatures is visualized in Figure 9.

TREEi−1

SIGNEXTi−1

ROOTNEXTi

TREENEXTi

TREEi

Fig. 9. Distributed generation of SigNexti−1, the one-time signature of the root
of TreeNexti.

We estimate the running time of the distributed root signing. The one-
time signature of a root of a tree on layer i is generated using the Winternitz
parameter wi−1 of layer i − 1. According to Section 1.2 the generation of
this signature requires (2wi−1 −1)twi−1 hash function evaluations in the worst
case. As shown in Section 3 the generation of the one-time signature requires
twi−1 + 1 calls to the PRNG. Since each tree on layer i has 2Hi leaves, the
computation of its root signature is distributed across 2Hi steps. Therefore,
the total number of extra operations for each leaf of Treei to compute the
root signature of TreeNexti is at most

csig(i) =
⌈

(2wi−1 − 1)twi−1

2Hi

⌉
cHash +

⌈
twi−1 + 1

2Hi

⌉
cPrng. (53)

Distributed root computation

We explain, how the root of TreeNexti is computed while TreePrevi is
active. This is quite simple. Both TreePrevi and TreeNexti have the same
number of leaves. When a leaf of TreePrevi is used, the leaf with the same
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index in TreeNexti is calculated and passed to the treehash algorithm from
Section 2.

If i < T , i.e. TreeNexti is not on the lowest level, the computation
of each leaf of TreeNexti can also be distributed. This is explained next.
Suppose that we want to construct the jth leaf of TreeNexti while we are
using the jth leaf of TreePrevi. This computation is distributed across the
leaves of the tree TreeLower on layer i+1 whose root is signed using the jth
leaf of TreePrevi. When the first leaf of TreeLower is used, we determine
the number of hash function evaluations and calls to the PRNG required
to compute the jth leaf of TreeNexti. Recall that the calculation of this
leaf requires the computation of a Winternitz one-time key pair. We divide
those numbers by 2Hi+1 to obtain the number of operations we will execute
in each leaf of TreeLower. Whenever a leaf of TreeLower is used, the
computation of the jth leaf of TreeNext is advanced by executing those
operations.

Once the jth leaf of TreeNexti is generated, it is passed to the treehash
algorithm. This contributes to the construction of the root of TreeNexti.
This construction is complete, once we switch from TreePrevi to Treei.
So in fact, when Treei is used, the root of TreeNexti is known. The dis-
tributed computation of the roots is visualized in Figure 10. While construct-
ing TreeNexti, we also perform the initialization steps of the authentication
path algorithm of Section 4.5. That is, we store the authentication path of
leaf 0 and prepare the algorithm state.

TREEPREVi

TREELOWER

ROOTNEXTi

TREENEXTi

j

Fig. 10. Distributed computation of RootNexti. Leaf j of tree TreeNexti is
precomputed while using tree TreeLower. It is then used to partially compute
RootNexti.

We estimate the extra time required by the distributed root computation.
Recall that for the generation of a leaf of TreeNexti we first determine
the corresponding Winternitz one-time key pair. This key pair is constructed
using the Winternitz parameter wi of layer i. The generation of the one-time
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signature key requires twi
+ 1 calls to the PRNG. The generation of the one-

time verification key requires (2wi − 1)twi
hash function evaluations and the

computation of a leaf of TreeNexti requires one additional evaluation of the
hash function. This has been shown in Sections 1.2 and 3. Since TreeLower

has 2Hi+1 leaves, the computation of a leaf of TreeNexti can be distributed
over 2Hi+1 steps. Therefore, the total number of extra operations for each leaf
of TreeLower to compute a leaf of TreeNexti is

c1
leaf(i) =

⌈
(2wi − 1)twi

+ 1
2Hi+1

⌉
cHash +

⌈
twi

+ 1
2Hi+1

⌉
cPrng. (54)

Once a leaf of TreeNexti is found, it is passed to the treehash algorithm.
By the results of Section 2 this costs at most

c2
leaf(i) = Hi · cHash (55)

additional evaluations of the hash function.

Distributed authentication path computation

Next, we describe the computation of the authentication path of the next leaf
of tree Treei. We use the algorithm described in Section 4.5. This algorithm
requires the computation of (Hi − Ki)/2 + 1 leaves per round to generate
upcoming authentication paths on layer i = 1, . . . , T . As described above, the
computation of these leaves is distributed over the 2Hi+1 leaves (or steps) of
tree TreeLower, the current tree on the next lower layer i + 1. Again, this
is possible only for leaves in layers i = 1, . . . , T − 1. The computation of the
leaves in layer T cannot be distributed.

When we use TreeLower for the first time we calculate the number of
hash function evaluations and calls to the PRNG required to compute the
(Hi−Ki)/2+1 leaves. Recall that we have to compute a Winternitz one-time
key pair to obtain this leaf. Then we divide these costs by 2Hi+1 to estimate
the number of operations we have to spend for each leaf of tree TreeLower.
At the beginning we don’t know which leaves must be computed, we only know
how may. Therefore, we have to interact with Algorithm 4.6. We perform the
necessary steps to decide which leaf must be computed first. After computing
this leaf we pass it to the authentication path algorithm which updates the
treehash instance and determines the which leaf must be computed next. This
procedure is iterated until all required leaves are computed. The distributed
authentication path computation is visualized in Figure 11.

We estimate the cost of the distributed authentication path computation.
The algorithm of Section 4.5 requires the computation of (Hi−Ki)/2+1 leaves
for each authentication path. The leaves are computed using the Winternitz
parameter wi of layer i. The generation of one leaf requires twi

+ 1 calls to
the PRNG and (2wi − 1)twi

+ 1 hash function evaluations, see Sections 1.2
and 3. The computation of the those (Hi − Ki)/2 + 1 leaves is distributed
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TREEi

TREELOWER
required leaves

Fig. 11. Distributed computation of the next authentication path. The (Hi−Ki)/2
required leaves are computed while using tree TreeLower.

over the 2Hi+1 steps in the tree on layer i + 1. Therefore, the total number
of operations for each leaf of TreeLower to compute the (Hi −Ki)/2 + 1
leaves is

c1
auth(i) =

Hi −Ki + 2
2

· c1
leaf(i). (56)

The completed leaves are passed to the treehash algorithm that computes their
parent nodes. The algorithm of Section 4.5 requires at most 3(Hi−Ki−1)/2+1
evaluations of the hash function for the computation of parents. Another
Hi − Ki calls to the PRNG are required to prepare upcoming seeds. These
operations are not distributed but performed at once. Hence, the total number
of operations for each leaf of Treei is at most

c2
auth(i) =

3(Hi −Ki)− 1
2

· cHash + (Hi −Ki) · cPrng. (57)

Example 6. This example illustrates how the distributed signature generation
improves the signature generation time. Let H1 = . . . = HT = H. Further,
all layers use the same Winternitz parameter w and the same value for K.
Let csig denote the worst case cost for generating a one-time signature with
Winternitz parameter w, let cauth denote the worst case cost for generating
an authentication path in a tree of height H using K, and let ctree denote the
cost for partially computing the next tree. The worst case cost for the GMSS
signature generation then is

csig + cauth + ctree +
(T − 1)csig + (T − 1)cauth + (T − 2)ctree

2H
.

When the signature generation is not distributed, as in the case of CMSS, the
worst case cost is

Tcsig + Tcauth + (T − 1)ctree.
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GMSS key pair generation

We explain GMSS key pair generation, establish the size of the keys, and the
cost for computing them. The following parameters are selected. The number
T of layers, the heights H1, . . . , HT of the Merkle trees on each layer, the Win-
ternitz parameters w1, . . . , wT for each layer, and the parameters K1, . . . ,KT

for the authentication path algorithm of Section 4.5.
We use the approach introduced in Section 3 and use an PRNG for the

one-time signature generation. Therefore we must choose initial seeds Seedi,
for each layer i = 1, . . . , T . The GMSS public key is the root Root1 of the
single tree in layer i = 1. The GMSS private key consists of the following
entries:

Seedi , i = 1, . . . , T , SeedNexti , i = 2, . . . , T
Sigi , i = 1, . . . , T − 1 , RootNexti , i = 2, . . . , T

Authi , i = 1, . . . , T , AuthNexti , i = 2, . . . , T
Statei , i = 1, . . . , T , StateNexti , i = 2, . . . , T

(58)

The seeds Seedi are required for the generation of the one-time signature
keys used to sign the data and the roots. The seeds SeedNexti are required
for the distributed generation of subsequent roots. These seeds are available
after the generation of the roots RootNexti. The one-time signatures Sigi

of the roots are required for the GMSS signatures. The signatures Sigi do not
have to be computed explicitly. They are an intermediate value during the
computation of the 0th leaf of tree Treei−1. The roots RootNexti of the
next tree in each layer are required for the distributed generation of the one-
time signatures SigNexti−1. Also, the authentication path for the first leaf
of the first and second tree in each layer is stored. Statei and StateNexti

denote the state of the authentication path algorithm of section 4.5 required to
compute authentication paths in trees Treei and TreeNexti, respectively.
This state contains the seeds and the treehash instance and is initialized during
the generation of the root.

The construction of a tree on layer i requires the computation of 2Hi leaves
and 2Hi − 1 evaluations of the hash function to compute inner nodes. Each
leaf computation requires (2wi − 1) · twi

+ 1 hash function evaluations and
twi

+ 1 calls to the PRNG. The total cost for one tree on layer i is given as

ctree(i) =
(
2Hi (twi

(2wi − 1) + 2)− 1
)
cHash + 2Hi (twi

+ 1) cPrng. (59)

Since we construct two trees on layers i = 2, . . . , T and one on layer i = 1,
the total cost for the key pair generation is

ckeygen =
T∑

i=1

ctree(i) +
T∑

i=2

ctree(i). (60)

The memory requirements of the keys depend on the output size of the used
hash function n. A root is a single hash value and requires n bits. A seed
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also requires n bits. A one-time signature Sigi requires twi−1 · n bits. An
authentication path together with the algorithm state requires

mauth(i) =
(

3Hi +
⌊

Hi

2

⌋
− 3Ki − 2 + 2Ki

)
· n bits. (61)

For each layer i = 2, . . . , T , we store two seeds, two authentication paths and
algorithm states, one root and the one-time signature of one root. For layer
i = 1, we store one seed and one authentication path and algorithm state.
The total sizes of the public and the private key are

mpubkey = n bits, (62)

mprivkey =

(
T∑

i=1

(mauth(i) + 1) +
T∑

i=2

(mauth(i) + twi−1 + 2)

)
n bits. (63)

GMSS signature generation

The GMSS signature generation is split in two parts, an online part and
an offline part. The online part is equivalent to the CMSS online part. The
signer constructs the corresponding signature key from the seed SeedT and
generates the one-time signature SigT of the document to be signed. Then he
prepares the signature as in Equation (64). The offline part takes care of the
distributed computation of upcoming roots, one-time signatures of roots and
authentication paths as described above.

σs =
(
s, SigT , YT ,AuthT ,

SigT−1, YT−1,AuthT−1

...
Sig1, Y1,Auth1

)
.

(64)

The online part requires the generation of a single one-time signature. This
signature is generated using the Winternitz parameter of the lowest layer T .
According to Section 1.2, this requires

conline = (2wT − 1)twT
· cHash + (twT

+ 1)cPrng. (65)

operations in the worst case. The size of an GMSS signature is computed
with the same formula we used for as the CMSS signatures. It consists of T
authentication paths (Hi ·n bits) and T one-time signatures (twi

·n bits), one
for each layer i = 1, . . . , T . Adding up yields

msignature =
T∑

i=1

(Hi + twi
) · n bits. (66)

To estimate the computational effort required for the offline part we
assume the worst case where we have to advance one leaf on all layers
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i = 1, . . . , T . The computation of the one-time signature SigNexti can be
distributed for each layers i = 1, . . . , T − 1. The computation of the leaves
required to construct the root RootNexti can be distributed for all layers
i = 2, . . . , T − 1. For layer i = T , the respective leaf of tree TreeNextT

must be computed at once. Together with the hash function evaluations for
the treehash algorithm, this requires at most

c3
leaf = ((2wT − 1)twT

+ HT + 1)cHash + (twT
+ 1)cPrng (67)

operations. The leaves required for the computation of upcoming authentica-
tion paths can be distributed for all layers i = 1, . . . , T − 1. For layer i = T ,
the (HT − KT )/2 + 1 leaves must be computed at once. Together with the
hash function evaluations for the treehash algorithm, this requires at most

c3
auth =

HT −KT + 2
2

· c3
leaf +

3(HT −KT )− 1
2

· cHash

+ (HT −KT ) · cPrng

(68)

operations. In summary, the number of operations required by the offline part
in the worst case are

coffline =
T∑

i=2

csig(i) +
T−1∑
i=2

(
c1
leaf(i) + c2

leaf(i)
)

+ c3
leaf

+
T−1∑
i=1

(
c1
auth(i) + c2

auth(i)
)

+ c3
auth.

(69)

The last step is to estimate the space required by the offline part. We
have to store the partially constructed one-time signature SigNexti for lay-
ers i = 1, . . . , T − 1 which requires at most twi−1 · n bits. We also have to
store the treehash stack for the generation of the root RootNexti for layers
i = 2, . . . , T which requires Hi · n bits. We further require memory to store
partially constructed leaves. One leaf requires at most twi

· n bits. For the
generation of RootNexti we have to store at most one leaf for each layer
i = 2, . . . , T − 1. For the authentication path, we have to store at most one
leaf for each layer i = 1, . . . , T − 1. Note that since we compute the leaves
required for the authentication path successively, we have to store only one
partially constructed leaf at a time. Finally, we need to store the partial state
StateNexti of the authentication path algorithm for layers i = 2, . . . , T
which requires at most mauth(i) bits (see Equation (61)). In summary, the
memory required by the offline part in the worst case is

moffline =

(
T∑

i=2

(
twi−1 + Hi + mauth(i)

)
+

T−1∑
i=2

twi
+

T−1∑
i=1

twi

)
· n bits. (70)
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GMSS signature verification

Since the main idea of GMSS is to distribute the signature generation, the
signature verification doesn’t change compared to CMSS. The verifier succes-
sively verifies a one-time signature and uses the corresponding authentication
path and Equation (52) to compute the root. This is done until the root of
the tree in the top layer is computed. If this root matches the signers public
key, the signature is valid.

The verifier must verify T one-time signatures which in the worst case
requires (2wi−1)twi

evaluations of the hash function, for i = 1, . . . , T . Another
Hi evaluations of the hash function are required to reconstruct the path to
the root using the authentication path. In total, the number of hash function
evaluations required in the worst case is

cverify =
T∑

i=1

((2wi − 1)twi
+ Hi) cHash. (71)

7 Security of the Merkle Signature Scheme

This section deals with the security of the Merkle signature scheme. We will
show that the Lamport–Diffie one-time signature scheme is existentially un-
forgeable under an adaptive chosen message attack (CMA-secure) as long
as the used one-way function is preimage resistant. Then we show that the
Merkle signature scheme is CMA-secure as long as the used hash function
is collision resistant and the underlying one-time signature scheme is CMA-
secure. Finally, we estimate the security level of the Merkle signature scheme
for a given output length n of the hash function.

7.1 Notations and definitions

We start with some security notions and definitions.

Security notions for hash functions

We present three security notions for hash functions: preimage resistance,
second preimage resistance, and collision resistance. The definitions are taken
from [30]. We write x

$←− S for the experiment of choosing a random element
from the finite set S with the uniform distribution. Let G be a family of hash
functions, that is, a parameterized set

G =
{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}
(72)

where n ∈ N and K is a finite set. The elements of K are called keys. An
adversary Adv is a probabilistic algorithm that takes any number of inputs.
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We define preimage resistance. In fact, our notion of preimage resistance
is a special case of the preimage resistance defined in [30] which is useful in
our context. Consider an adversary that attempts to find preimages of the
hash functions in G. The adversary takes as input a key k ∈ K and the image
y = gk(x) of a string x ∈ {0, 1}n. Both k and x are chosen randomly with the
uniform distribution. The adversary outputs a preimage x′ of y or failure.
The success probability of this adversary is denoted by

Pr[k $←− K,x
$←− {0, 1}n, y ←− gk(x), x′ $←− Adv(k, y) : gk(x′) = y]. (73)

Let t, ε be positive real numbers. The family G is called (t, ε) preimage
resistant, if the success probability (73) of any adversary Adv that runs in
time t is at most ε.

Next, we define second preimage resistance. Consider an adversary that
attempts to find second preimages of the hash functions in G. The adversary
takes as input a key k ∈ K and a string x ∈ {0, 1}n, both chosen randomly
with the uniform distribution. He outputs a second preimage x′ under gk of
gk(x) which is different from x or failure. The success probability of this
adversary is denoted by

Pr[k $←− K,x
$←− {0, 1}n, x′ $←− Adv(k, x) : x �= x′ ∧ gk(x) = gk(x′)]. (74)

Let t, ε be positive real numbers. The family G is called (t, ε) second-preimage
resistant, if the success probability (74) of any adversary Adv that runs in
time t is at most ε.

Finally, we define collision resistance. Consider an adversary that attemps
to find collisions of the hash functions in G. The adversary takes as input
a key k ∈ K, chosen randomly with the uniform distribution. He outputs a
collision of gk, that is, a pair x, x′ ∈ {0, 1}∗ with x �= x′ and g(x) = g(x′) or
failure. The success probability of this adversary is denoted by

Pr[k $←− K, (x, x′) $←− Adv(k) : x �= x′ ∧ gk(x) = gk(x′)]. (75)

Let t, ε be positive real numbers. The family G is called (t, ε) collision resistant,
if the success probability (75) of any adversary Adv that runs in time t is at
most ε.

Signature schemes

Let Sign be a signature scheme. So Sign is a triple (Gen, Sig, Ver). Gen

is the key pair generation algorithm. It takes as input 1n, the string of n
successive 1s where n ∈ N is a security parameter. It outputs a pair (sk, pk)
consisting of a private key sk and a public key pk. Sig is the signature genera-
tion algorithm. It takes as input a message M and a private key sk. It outputs
a signature σ for the message M . Finally, Ver is the verification algorithm.
Its input is a message M , a signature σ and a public key pk. It checks whether
σ is a valid signature for M using the public key pk. It outputs true if the
signature is valid and false otherwise.
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Existential unforgeability

Let Sign = (Gen,Sig,Ver) be a signature scheme and let (sk, pk) be a key
pair generated by Gen. We define existential unforgeability under an adaptive
chosen message attack of Sign. This security model assumes a very powerful
forger. The forger has access to the public key and a signing oracle O(sk, ·)
that, in turn, has access to the private key. On input of a message the oracle
returns the signature of that message. It is the goal of the forger to win the
following game. The forger chooses at most q messages and lets the signing or-
acle find the signatures of those messages. The maximum number q of queries
is also an input of the forger. The oracle queries may be adaptive, that is, a
message may depend on the oracles answers to previously queried messages.
The forger outputs a pair (M ′, σ′). The forger wins if M is different from all
the messages in the oracle queries and if Ver(M ′, σ′, pk) = true. We denote
such a forger by For

O(sk,·)(pk).
Let t and ε be positive real numbers and let q be a positive integer. The

signature scheme Sign is (t, ε, q) existentially unforgeable under an adaptive
chosen message attack if for any forger that runs in time t, the success prob-
ability for winning the above game (which depends on q) is at most ε. If Sign

has the above property it is also called a (t, ε, q) signature scheme.
For one-time signatures we must have q = 1 since the signature key of a

one-time signature scheme must be used only once. For the Merkle signature
scheme we must have q ≤ 2H .

7.2 Security of the Lamport–Diffie one-time signature scheme

In this section we discuss the security of LD–OTS from Section 1.1. We slightly
modify this scheme. Select a security parameter n ∈ N. Let K = K(n) be a
finite set of parameters. Let

F =
{
fk : {0, 1}n → {0, 1}n|k ∈ K

}

be a family of one-way functions. The key generation of the modified LD–OTS
works as follows. On input of 1n for a security parameter n a key k ∈ K(n)
is selected randomly with the uniform distribution. Then LD–OTS is used
with the one-way function fk. The secret and public keys are generated as
described in Section 1.1. The key k is included in the public key. We show
that the existential unforgeability under adaptive chosen message attacks of
this LD-OTS variant can be reduced to the preimage resistance of the family
F .

Suppose that there exists a forger For
O(X,·)(Y ) of LD-OTS. Then an

adversary AdvPre that determines preimages of functions in F can be con-
structed as follows. Fix a security parameter n. Input for AdvPre are a
key k and the image y = fk(x) of a string x ∈ {0, 1}n. Both k and x
are selected randomly with the uniform distribution. A LD–OTS key pair
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(X,Y ) is generated using the one-way function fk. The public key Y is of
the form Y = (yn−1[0], yn−1[1], . . . , y0[0], y0[1]). The adversary selects indices
a ∈ {0, . . . , n − 1} and b ∈ {0, 1} randomly with the uniform distribution.
He replaces the string ya[b] with the target string y. Next, AdvPre runs the
forger For

O(X,·)(Y ) with the modified public key. If the forger asks its or-
acle to sign a message M = (mn−1, . . . ,m0) and if ma = 1 − b, then the
adversary, playing the role of the oracle, signs the message and returns the
signature. The adversary can sign this message since he knows the original
key pair and because of ma = 1 − b, the modified string in the public key
is not used. However, if ma = b then the adversary cannot sign M . So his
answer to the oracle query is failure which also causes the forger to abort.
If the forger’s oracle query was successful or if the forger does not ask the
oracle at all the forger may produce a message M ′ = (m′

n−1, . . . ,m
′
0) and the

signature (σ′
n−1, . . . , σ

′
0) of that message. If m′

a = b, then σ′
a is the preimage

of y which the adversary returns. Otherwise, the adversary returns failure.
More formally, the adversary is presented in Algorithm 7.1.

Algorithm 7.1 AdvPre

Input: k
$←− K and y = fk(x), where x

$←− {0, 1}n

Output: x′ such that y = fk(x) or failure

1. Generate an LD–OTS key pair (X, Y ).
2. Choose a

$←− {0, . . . , n − 1} and b
$←− {0, 1}.

3. Replace ya[b] by y in the LD–OTS verification key Y .
4. Run For

O(X,·)(Y ).
5. When For

O(X,·)(Y ) asks its only oracle query with M = (mn−1, . . . , m0):
a) if ma = (1− b) then sign M and respond to the forger For

O(X,·)(Y ) with
the signature σ.

b) else return failure.
6. When For

O(X,·)(Y ) outputs a valid signature σ′ = (σ′
n−1, . . . , σ

′
0) for message

M ′ = (m′
0, . . . , m

′
n−1):

a) if m′
a = b then return σ′

a as preimage of y.
b) else return failure.

We now compute the success probability of the adversary AdvPre. We
denote by ε the forger’s success probability for producing an existential forgery
of the LD–OTS and by t its running time. By tGen and tSig we denote the
times the LD–OTS requires for key and signature generation, respectively.

The adversary AdvPre is successful in finding a preimage of y if and only
if For

O(X,·)(Y ) queries the oracle with a message M = (mn−1, . . . ,m0) with
ma = (1 − b) (Line 5a) or if he queries the oracle not at all and if the forger
returns a valid signature for message M ′ = (m′

0, . . . ,m
′
n−1) with m′

a = b (Line
6a). Since b is selected randomly with the uniform distribution, the probability
for ma = (1− b) is 1/2. Since M ′ must be different from the queried message
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M , there exists at least one index c such that m′
c = 1−mc. AdvPre is successful

if c = a, which happens with probability at least 1/2n. Hence, the adversary’s
success probability for finding a preimage in time tow = t + tSig + tGen, is at
least ε/4n. We have proved the following theorem.

Theorem 4. Let n ∈ N, let K be a finite parameter set, let tow, εow be pos-
itive real numbers, and F =

{
fk : {0, 1}n → {0, 1}n|k ∈ K

}
be a family

of (tow, εow) one-way functions. Then the LD–OTS variant that uses F is
(tots, εots, 1) existentially unforgeable under an adaptive chosen message at-
tack with εots ≤ 4n · εow and tots = tow − tSig − tGen where tGen and tSig are
the key generation and signing times of LD–OTS, respectively.

7.3 Security of the Merkle signature scheme

This section discusses the security of the Merkle signature scheme. We modify
the Merkle scheme slightly. Select a security parameter n ∈ N . Let K = K(n)
be a finite set of parameters. Let

G =
{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}

be a family of hash functions. The key generation of the modified MSS works
as follows. On input of 1n for a security parameter n a key k ∈ K(n) is selected
randomly with the uniform distribution. Then the Merkle signature scheme
is used with the hash function gk and some one-time signature scheme. The
secret and public keys are generated as described in Section 2. The parameter
k is included in the public key. We show that the existential unforgeability
of this MSS variant under an adaptive chosen message attack can be reduced
to the collision resistance of the family G and the existential unforgeability of
the underlying one-time signature scheme.

We explain how an existential forger for the Merkle signature scheme can
be used to construct an adversary that is either an existential forger for the
underlying one-time signature scheme or a collision finder for a hash function
in G. The input of the adversary is a one-time signature scheme, a key k ∈ K
chosen randomly with the uniform distribution, and the Merkle tree height
H. Input is also a verification key YOTS and a signing oracle OOTS(XOTS, ·),
where (XOTS, YOTS) is a key pair of the one-time signature scheme.

The adversary is allowed to query the oracle OOTS(XOTS, ·) once. He aims
to output a collision for the hash function gk or an existential forgery (M ′, σ′)
for the one-time signature scheme that can be verified using the verification
key YOTS. He has access to an adaptive chosen message forger For

O(sk,·)(pk)
for the MSS with hash function gk and tree height H. The forger is allowed
to ask 2H queries to its signature oracle. The adversary is supposed to imper-
sonate that oracle.

The adversary selects randomly with the uniform distribution an index c
in the set {0, . . . , 2H−1}. He generates a Merkle key pair in the usual manner
with the only exception that as the cth one-time verification key the one-time
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verification key YOTS from the input is used. Then the adversary invokes the
adaptive chosen message forger for the Merkle scheme with the hash function
gk and the public Merkle key which he generated before. Without loss of
generality, we assume that the forger queries the oracle 2H times. The oracle
answers are given by the adversary. When the forger asks for the ith signature,
i �= c, then the adversary produces this signatures using the signature keys
which he generated before. However, when the forger asks for the cth signature,
the adversary queries the oracle OOTS(XOTS, ·). Suppose that the forger is
successful and outputs an existential forgery (M ′, (s, σ′, Y ′, A′)) where s is
the index of the one-time key pair used for this signature, σ′ is the one-
time signature, Y ′ is the verification key and A′ is the authentication path.
The adversary examines the Merkle signature (s, σ, Y,A) of M he returned in
response to the forgers sth oracle query.

If s = c and (Y,A) = (Y ′, A′), then the adversary returns (M ′, σ′). We
show that this is an existential forgery of the one-time signature scheme with
verification key YOTS. Since s = c we have Y = Y ′ = YOTS. So the verification
key in the message returned by the forger is the same as the verification key
returned by the oracle when it is queried for the cth time. The same is true for
the authentication path. This implies that the message M in the cth oracle
query is different from M ′. So (M ′, σ′) is an existential forgery.

If (Y,A) �= (Y ′, A′), then the adversary can construct a collision for the
hash function gk as follows. Consider the path B = (B0 = gk(Y ), B1, . . . , BH)
from Y in the Merkle tree to its root constructed using the hash function gk

and the authentication path A = (A0, . . . , AH−1). Compare it to the path
B′ = (B′

0 = gk(Y ′), B′
1, . . . , B

′
H) from Y ′ in the Merkle tree to its root

constructed using the authentication path A′ = (A′
0, . . . , A

′
H−1). First as-

sume that B and B′ are different. For example, this is true when Y �= Y ′.
Since BH = B′

H is the MSS public key, there is an index 0 ≤ i < H with
Bi+1 = B′

i+1 and Bi �= B′
i. Since Bi+1 is the hash value of the concatenation

of Bi and Ai (in the appropriate order), and since B′
i+1 is the hash value of the

concatenation of B′
i and A′

i (in the appropriate order), a collision of gk is found.
Next, assume that B and B′ are equal. Therefore gk(Y ) = B0 = B′

0 = gk(Y ′)
holds. If Y �= Y ′ a collision is found. If Y = Y ′ then A and A′ are different.
Assume that Ai �= A′

i for some index i < H. Since Bi+1 is the hash value
of the concatenation of Bi and Ai (in the appropriate order), and since B′

i+1

is the hash value of the concatenation of B′
i and A′

i (in the appropriate or-
der) again a collision is found. That collision is returned by the adversary. In
all other cases the adversary returns failure. Algorithm 7.2 summarizes our
description.

We now estimate the success probability of the adversary AdvCR,OTS. In
the following, ε denotes the success probability and t the running time of
the forger. Also, tGen, tSig, and tVer denote the times MSS requires for key
generation, signature generation, and verification, respectively.

If (Y ′, A′) �= (Y,A), then the adversary returns a collision. His (conditional)
probability εcr for returning a collision in time tcr = t+2H · tSig + tVer + tGen
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Algorithm 7.2 AdvCR,OTS

Input: Key for the hash function k
$←− K, height of the tree H ≥ 2, one instance

of the underlying OTS consisting of a verification key YOTS and the corresponding
signing oracle OOTS(XOTS, ·).
Output: A collision of gk, an existential forgery for the supplied instance of the
OTS, or failure

1. Set c
$←− {0, . . . , 2H − 1}.

2. Generate OTS key pairs (Xj , Yj), j = 0, . . . , 2H − 1, j �= c and set Yc ← YOTS.
3. Complete the Merkle key pair generation and obtain (sk, pk).
4. Run For

O(sk,·)(pk).
5. When For

O(sk,·)(pk) asks its qth oracle query (0≤q≤2H−1):
a) if q = c then query the signing oracle OOTS(XOTS, ·).
b) else compute the one-time signature σ using the qth signature key Xq.
c) Return the corresponding Merkle signature to the forger.

6. If the forger outputs an existential forgery (M ′, (s, σ′, Y ′, A′)), examine the
Merkle signature (s, σ, Y, A) returned in response to the forgers sth oracle query.
a) if (Y ′, A′) �= (Y, A) then return a collision of gk.
b) else

i. if s = c then return (M ′, σ′) as forgery for the supplied instance of
the one-time signature scheme.

ii. else return failure.

is at least ε. If (Y ′, A′) = (Y,A) the adversary returns an existential forgery
if s = c. His (conditional) probability εots for finding an existential forgery in
time tots = t + 2H · tSig + tVer + tGen is at least ε · 1/2H . Since both cases
are mutually exclusive, one of them occurs with probability at least 1/2. So
we have proved the following theorem.

Theorem 5. Let K be a finite set, let H ∈ N, tcr, tots, εcr, εots ∈ R>0, εcr ≤
1/2, εots ≤ 1/2H+1, and let G =

{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}
be a

family of (tcr, εcr) collision resistant hash functions. Consider MSS using a
(tots, εots, 1) signature scheme. Then MSS is a (t, ε, 2H) signature scheme with

ε ≤ 2 ·max
{
εcr, 2H · εots

}
(76)

t = min
{
tcr, tots

}
− 2H · tSig − tVer − tGen. (77)

This theorem tell us that if there is no adversary that breaks the collision
resistance of the family G in time at most tcr with probability greater than εcr
and there is no adversary that is able to produce an existential forgery for the
one-time signature scheme used in MSS in time at most tots with probability
greater than εots, then there exists no forger for MSS running in time at most
min

{
tcr, tots

}
− 2H · tSig − tVer − tGen and success probability greater then

2 ·max
{
εcr, 2H · εots

}
.
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7.4 The security level of MSS

The goal of this section is to estimate the security level of the Merkle signature
scheme when used with the Lamport–Diffie one-time signature scheme for a
given output length n of the hash function. Let b ∈ N. We say that MSS has
security level 2b if the expected number of hash function evaluations required
for the generation of an existential forgery is at least 2b. This security level
can be computed as t/ε where t is the running time of an existential forger and
ε is its success probability. We also say that the signature scheme has b bits of
security or that the bit security is b. In this section let εcr, tcr, εow, tow ∈ R>0,
let K be a finite set, and let

G =
{
gk : {0, 1}∗ → {0, 1}n|k ∈ K

}
(78)

be a family of (tcr, εcr) collision resistant and (tow, εow) preimage resistant
hash functions.

Since we consider MSS using LD-OTS, we first combine Theorems 4 and 5.
This is achieved by substituting the values for εots and tots from Theorem 4
in Equations (76) and (77) from Theorem 5. This yields

ε ≤ 2 ·max
{
εcr, 2H · 4n · εow

}
(79)

t = min
{
tcr, tow

}
− 2H · tSig − tVer − tGen. (80)

Note that we can replace tots by tow rather than tow − tSig − tGen, since the
time LD-OTS requires for signature and key generation is already included
in the signature and key generation time of the MSS in Theorem 5. We also
require εcr ≤ 1/2 and εow ≤ 1/(2H+1 · 4n) to ensure ε ≤ 1.

To estimate the security level, we need explicit values for the key pair
generation, signature generation and verification times of MSS using LD-OTS.
We will use the following upper bounds.

tGen ≤ 2H · 6n, tSig ≤ 4n(H + 1), tVer ≤ n + H

We also make assumptions for the values of (tcr, εcr) and (tow, εow). We dis-
tinguish between attacks that use classic computers only and attacks with
quantum computers.

Using classical computers

In our security analysis of MSS we assume that the hash functions under
consideration have output length n and only admit generic attacks against
their preimage and collision resistance. Those generic attacks are exhaustive
search and the birthday attack. When classical computers are used, then a
birthday attack that inspects 2n/2 hash values has a success probability of
approximately 1/2. Also, an exhaustive search of 2n/2 random strings yields
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a preimage of a given hash value with probability 1/2n/2. Therefore, we as-
sume that the hash function family G is (2n/2, 1/2) collision resistant and
(2n/2, 1/2n/2) preimage resistant. In this situation, we prove the following
theorem.

Theorem 6 (Classic case). The security level of the Merkle signature
scheme combined with the Lamport-Diffie one-time signature scheme is at
least

b = n/2− 1 (81)

if the height of the Merkle tree is at most H ≤ n/3 and the output length of
the hash function is at least n ≥ 87.

To prove Theorem 6 we use our assumption and Equations (79) and (80)
and obtain the following estimate for the security level.

t

ε
≥ 2n/2 − 2H · tSig − tVer − tGen

2 ·max{1/2, 2H · 4n · 1/2n/2} . (82)

Using H ≤ n/3, the maximum in the denominator is 1/2 as long as

n/3 ≤ n/2− log2 4n− 1 (83)

which holds for n ≥ 53. Using the upper bounds for tSig, tVer, and tGen

estimated above, Equation (82) implies

t

ε
≥ 2n/2 − 2H · 4n(H + 1)− (n + H)− 2H · 6n. (84)

Using H ≤ n/3, the desired lower bound for the security level of 2n/2−1 holds
as long as

2n/3(4/3 · n2 + 4n) + 4/3 · n + 2n/3 · 6n ≤ 2n/2−1 (85)

which is true for n ≥ 87.

Using quantum computers

Again, we assume that our hash functions only admit generic attacks against
their collision and preimage resistance. However, when quantum computers
are available, the Grover algorithm [13] can be used in those generic attacks.
Grovers algorithm requires 2n/3 evaluations of the hash function to find a
collision with probability at most 1/2. So we assume that our hash functions
are (2n/3, 1/2) collision resistant. Also as explained in Remark 3 of Section 5
in Chapter 2 “Quantum computing”, we may by virtue of Grover’s algorithm
assume that our hash functions are (2n/3, 1/2n/3) preimage resistant. In this
situation, we prove the following theorem.



90 Johannes Buchmann, Erik Dahmen, and Michael Szydlo

Theorem 7 (Quantum case). The security level of the Merkle signature
scheme combined with the Lamport-Diffie one-time signature scheme is at
least

b = n/3− 1 (86)

if the height of the Merkle tree is at most H ≤ n/4 and the output length of
the hash function is at least n ≥ 196.

To prove Theorem 7 we use the same approach as for the proof of Theorem
6. We use our assumption on the hash function and Equations (79) and (80)
and obtain the following estimate for the security level.

t

ε
≥ 2n/3 − 2H · tSig − tVer − tGen

2 ·max{1/2, 2H · 4n · 1/2n/3} . (87)

Using H ≤ n/4, the maximum in the denominator is 1/2 as long as

n/4 ≤ n/3− log2 4n− 1 (88)

which holds for n ≥ 119. Using the upper bounds for tSig, tVer, and tGen

estimated above, Equation (87) implies

t

ε
≥ 2n/3 − 2H · 4n(H + 1)− (n + H)− 2H · 6n. (89)

Using H ≤ n/4, the desired lower bound for the security level of 2n/3−1 holds
as long as

2n/4(n2 + 4n) + 5/4 · n + 2n/4 · 6n ≤ 2n/3−1 (90)

which is true for n ≥ 196.

Comparison of the bit security

Table 2 shows the security level for some output lenghts n of the hash function.
This table also shows the maximum value for H such that the security level
holds.

Table 2. Security level of the Merkle signature scheme combined with the Lamport–
Diffie one-time signature scheme in bits.

Output length n 128 160 224 256 384 512

Classic case
bit security b 63 79 111 127 191 255
Maximum value for H 42 53 74 85 128 170

Quantum case
bit security b − − 73 84 127 169
Maximum value for H − − 56 64 96 128
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This table shows, that state-of-the-art hash functions can be used to ensure
a high security level of the Merkle signature scheme, even against attacks by
quantum computers. For all practical applications the maximum height of the
Merkle tree and the resulting number of messages that can be signed with one
key pair is sufficiently large.
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